⚠️ AVISO: Estamos encerrados dia 3 de Maio. ⚠️

ProtoPasta é uma empresa situada nos Estados Unidos da América, de produção de filamentos para impressão 3D de alta qualidade.
Caracterizada pelos rolos feitos em cartão, esta marca é mundialmente famosa  por ser especializada em materiais como PLA e ABS modificados com outros materiais, como o PLA Magnético; o PLA Condutivo; PLA de fibra de carbono; HTPLA de cobre, latão ou bronze; ou o ABS-PC.


 

Another shout out to Thomas Sanladerer (toms3d.org) for the challenge to make an ugly color during his visit. 

We ended up with some greens that weren't terrible and found it's very difficult to make an ugly color. 

To be honest, Lulzbot's company green is not my favorite color, but it was a fun challenge to recreate this color. 

I was inspired by the recent Mini 2 release shortly after ERRF. 

Realizing I'd missed seeing Lulzbot at ERRF, I followed my inspiration to make For the Lulz Metallic Green HTPLA 

Who knew adding sparkles would totally change my impression of this color?  In the light it shifts from lemon to lime covering all the versions I've seen of this color. 

I find it shockingly beautiful and I hope you do to!  Enjoy!!!

 

 

Why did we make this unique green color? We did it for the lulz...

Created from our highest quality, translucent HTPLA v2, this stuff is green and sparkly!

Print with the ease of standard PLA with standard hardware and temperatures, but make fun, mesmerizing prints that stand out. Celebrate good times by printing toys, treasures, and keepsakes. If you want to make a print more fun, just add some metallic pop! Our metallic finish contains no actual metal and has little risk of clogging or wearing your nozzle, and it won't make a glittery mess, but beware the printing is sure to be addictive! Metallic particles are relatively small but have some orientation effects, giving top/bottom surfaces more shine than sidewall, so have some fun playing with orientation to see how the result changes! We recommend 0.2 mm layers for the best result.

HEAT TREATING

Like our other HTPLAs, Metallic HTPLA can be "Heat Treated" to increase crystallinity for "Higher Temperature" resistance compared to amorphous PLA, ABS, and co-polyesters like PETG! Glittler Flake HTPLA prints translucence, but turns opaque when heat treated (or crystallized). With a more crystalline structure, heat treated HTPLA parts can hold form to near melting, though temperatures where the material is practically useful vary greatly depending on geometry and load conditions! For this improved the performance, your prints should be baked in an oven until you see a change from translucent to opaque with reduced gloss. This visual change indicating the improved performance! We've seen the change take place in 5-10 minutes on thin walled parts but can take an hour or more. We've had good luck in a quality, at home convection oven at 110C (225F). Parts will get very "floppy" before becoming more firm, so please leave supports on your parts or support them and bake them on a flat, non-radiating surface (like glass, ceramic, or composite).

For this improved performance, your prints should be baked in an oven until you see a change from translucent pink to opaque pink with reduced gloss. This visual change indicates the improved performance! We've seen the change take place in 5-10 minutes on thin walled parts but can take an hour or more. We've had good luck in a quality, at home convection oven at 110C (225F). Parts will get very "floppy" before becoming more firm, so please leave supports on your parts or support them and bake them on a flat, non-radiating surface (like glass, ceramic, or composite).

PRINTING

In our experience, good results were achieved using standard PLA parameters ranging from 195-225C nozzle with standard build surface preparation (blue tape, glue stick, or BuildTak). No heated bed required but up to 60C is okay. Beware, if the bed temperature is too high, your part base could actually heat treat while printing, increasing warping and decreasing adhesion. Some shrinkage will occur in the heat treating process, so dimension critical parts may need to be scaled appropriately (as much as 2.5% in our experience).

  • No abrasive fillers so expect normal wear with standard nozzles.
  • Available in 1.75 & 2.85 (3) mm diameter on a 50g diameter recyclable cardboard spool
  • Usable on most PLA-compatible printers, such as Lulzbot, Makerbot, FlashForge, Dremel, Ultimaker, Printrbot, and more!

 

High Temperature PLA ( HTPLA )

Looking for increased heat resistance without the need to switch to ABS? Protopasta High Temperature PLA offers heat deflection of up to 88° C (190.4° F) compared to standard PLA of 45-54° C (113-135° F). This makes it a great choice for moving parts (gears, RepRap pieces, etc) or prints that would face moderately high temperatures. Our High Temperature PLA is white, but can be painted after annealing.

What is it made out of?
Protopasta High Temperature PLA is made from a mineral filled, impact modified PLA with a nucleating agent to help promote crystallization. Crystallization after printing is what gives this material added heat resistance, so post-print annealing is essential to activate the heat deflection qualities of this material.How do I anneal my print?
You can anneal your finished prints several ways, the two easiest ways are by using hot (but not boiling) water or by placing it in a low temperature oven (newer oven models only). Follow these steps:
  • Water Method: Find a pot large enough to hold your print and fill it halfway with water. On medium heat, heat the water until it reaches 95-115 C (200-240 F) (a cooking thermometer works great for this), turn the heat to low and submerge the print in the warm water bath for 6-10 minutes. Placing a lid on your pot will help the water maintain temperature.
  • Oven Method: Many newer ovens often have low temperature settings (sometimes called "keep warm" or "bread proof"). Set your oven to 95-115 C (200-240 F), place your finished print on a tray, and set it in the oven for 6-10 minutes.
  • SUPPORT YOUR PRINT! Because the annealing process will soften the plastic somewhat, it's best to support your print during this process.
What temperature should I print it at?
Because 3D printers vary so much from model to model, and because many RepRap printers combine parts from several manufactures, we can't provide the optimum temperature for your machine. Generally, our customers find it prints just like standard PLA on their machines (at around 210° C), though others find success running it a bit hotter (around 220° C).Do I need a heated bed? No, High Temp PLA does not require a heated bed or an enclosure.

Getting Started with Proto-pasta PLAs including HTPLA

We've created this page to bring you a premium PLA and HTPLA printing experience that rivals our premium material. Follow below to improve your 3D printing experience. In other words, here's your shortcut to awesomeness with pasta. If at the end of this document you have questions or need assistance, please contact us at [email protected].

Filament Handling

Loose coils can be very tricky to manage. Going cowboy on your spool handling can quickly end up in a frustrating, tangled mess. Keep your loose coils wrangled with a spool holder like masterspool for a more trouble-free experience. Find out more about loose coil handling in Keith's blog post.

And for spooled filament, never let go of the loose end. When not in the printer extruder, tuck it away in the cardboard spool's corrugation! Also, avoid sharp bends and excessive force when loading filament into your printer.

Print settings

At Proto-pasta, we make high quality filament. We aspire to make exceptional results easy, but a positive result is very much dependent on your hardware, set-up, adjustments, and process parameters. Matching hardware with process and material for a positive experience is not always straight-forward, but you can start by pairing the following settings with your printer for a good starting point, then tune or troubleshoot as required.

Example settings for typical printer

  • Nozzle size = 0.4 mm (Standard to most printers & balances detail with productivity.)
  • Extrusion width = 0.45 mm (Typically larger than nozzle size. If using a larger nozzle diameter, be sure to set the extrusion width larger than that nozzle diameter.)
  • Layer thickness = 0.15 mm (For a balance of speed, quality & reliability.)
  • Speed(s) = 15-45 mm/s (Respecting mechanical and volume flow limits. Stay within the recommended speed range but apply slower speeds to the walls and faster speeds to the infill.)
  • Volume flow rate(s) = 1-3 cu mm/s (The result of above speed range, width, and layer thickness. Respect hardware and geometry limitations.)
  • Typical temperature = 215 C +/- 10 C (Matching material, hardware, and volume flow rate.)

Volume flow rate together with temperature dictates how melted the material is. This is hardware & condition dependent based on hot end, nozzle & extruder type, material & manufacturer as well as layer fan type, position & settings. Extrusion width, layer thickness & speed changes affect volume flow which may change required/desired temperature.

Additional settings of note

  • “Grid” infill type at 20-30% - “connect infill lines” unchecked (off).
  • Minimum 3 shells & 4 top/bottom layers for good surface quality.
  • Layer fan set to cool enough for build rate, but not so aggressive as to fail process by over-cooling nozzle and heater block.

Validation and fine-tuning

Post your prints & tag us @Proto_pasta on Twitter and InstagramNeed more help? Consider typical pitfalls and fixes below.

Typical pitfalls

  • Exceeding hardware capabilities.
  • Mismatch of flow rate and temperature.
  • Excessive nozzle cooling from layer fan yielding lower heater block and/or nozzle temperatures than set point.
  • Hardware shortcomings such as MK3 heat break, poor nozzle diameter, or other hangups.
  • Poor assembly or adjustment of components.
  • Excessive retraction distance or number of retractions.
  • Inaccurate flow with missing cross-sections or wall thickness not matching extrusion width software setting.

Typical Fixes

  • Heat break replacement with OEM, straight-through design and defect-free, smooth bore.
  • Proper assembly of components without plastic oozing gaps & with thermal grease.
  • Lightly oiling filament, but careful, a little goes a long way.
  • Reducing layer fan speed and/or isolating from heater block and nozzle.
  • Installing heater block sock to isolate heater block & nozzle from layer fan.
  • Increasing temperature to flow past internal hang-ups.
  • Reduce speed and/or choose a single speed for a single volume flow
  • Consider drive gear tension adjustment, bowden tube coupling/replacement, and spool mounting

We visited Joel and ended up with a helpful video on the subject:

 

Para uma correcta manutenção da sua impressora 3D, recomendamos sempre que trocar de material de filamento 3D,  a efectuar uma purga com filamento especial de limpeza.
Desta forma garante que não ficam vestígios de material nas paredes do nozzle, evitando o acumular de crosta que é criado sempre que efectua trocas de material.
Com este produto evita problema como "clogs" e "jams" e fará com que o seu nozzle mantenha-se sempre limpo, durando muito mais tempo.
Poderá encontrar a partir de 1.49€  no seguinte LINK

 

 

3D lac comprar em Portugal

Para obter maior aderência à superfície da sua  impressora 3D recomendamos a aplicar 3DLAC  na base da plataforma.

Poderá encontrar no seguinte LINK

 

 

Este material é altamente higroscópico, absorvendo rapidamente a humidade do ar passados poucos minutos após aberto, impossibilitando desta forma a correcta impressão 3D do mesmo. O resultado das impressões 3D de materiais com humidade tendem a ser frágeis e de acabamento irregular ou em certos casos, torna-se simplesmente impossíveis de imprimir.
Deverá de usar soluções de caixas fechadas com dessecante como sílica ou caixas próprias secadoras de filamento.
Poderá encontrar  no seguinte LINK

 

 

Download:
Technical and Safety Data Sheet

 

50g- Rolo
HTPLA For the Lulz Metallic Green HTPLA ( Community Inspired )
- Cor
1.75mm (+-0.05mm)
- Espessura / Tolerância de diâmetro
Muito Fácil
- Facilidade de Impressão

Embora subtil, o HTPLA Cloverleaf Metallic Green é carregado com um "pote o' ouro", mudando a cor para um verde mais quente, mais parecido com a planta. Não que adivinhe a origem natural e biológica do material a partir da sua estética. O Cloverleaf Verde Metálico HTPLA não é curto em brilho e tem um acabamento parecido com uma pintura que lembra um carro desportivo vintage. Em qualquer caso, esteja confiante que não é necessária sorte para um acabamento de alta qualidade em qualquer coisa que imprima usando este material!

 

 

ProtoPasta é uma empresa situada nos Estados Unidos da América, de produção de filamentos para impressão 3D de alta qualidade.
Caracterizada pelos rolos feitos em cartão, esta marca é mundialmente famosa  por ser especializada em materiais como PLA e ABS modificados com outros materiais, como o PLA Magnético; o PLA Condutivo; PLA de fibra de carbono; HTPLA de cobre, latão ou bronze; ou o ABS-PC.


 

 

Specs

Semi crystalline, heat treatable PLA for high temp use

Density: 1.24 g/cc
Length: 346 m/kg (1.75) 130 m/kg (2.85)
Typical Printing Temp: 205-225 C
Glass Transition (Tg)*: 60 C
Peak Crystallization (Tc)**: 95-115 C
Onset to Melt (Tm)***: 155 C
Typical change when heat treated: -2% x/y +1% z

Link to Safety Data Page

*max use with no heat treat & max platform temp
**heat treating @ temp 10+ min depending on size/mass
***max use when heat treated (annealed or crystallized)

Print

HTPLA prints well at 205-225 C, however it's important to match temp to your hardware & volume flow rate. With a typical hotend, you should be able to print at 205 C without jamming at a low flow rate. In machines with hardware that tends towards jamming, consider this video with Joel Telling.

Lower volume flows require lower temps, while higher volume flows require higher temps. In the previously-mentioned video, one way to overcome jamming is to set your temp to a higher-than-typical 240 C. This should then be matched with a high flow rate for a quality printing result.

For direct drives with a short distance between drive gears & nozzle, volume flows can approach 7-8 cubic mm/s or more if printing hot to overcome jamming. For bowden tubes where the distance between drive gear & nozzle are great or less powerful hotends, as little as 2 and as much as 4 cubic mm/s may be the limit. Beware of unintended speed changes from faster infills & slowing down for outlines or short layers. Consider our Ultimaker-specific blog for more on this topic.

A constant speed throughout the part is ideal from an extrusion perspective. Knowing your extrusion width, layer thickness & speed you can calculate your volume flow rate with the calculator like found in the previously-mentioned Ultimaker blog. Alternatively, if you know your volume flow rate limit, extrusion width & layer thickness, you can calculate your speed limit.

Heat Treat

PLA & HTPLA are amorphous in structure as printed (no heat treating) & though both are adequate performers in an office environment, they have poor temperature stability, loosing significant stiffness at temps nearing 60 C. Different than standard PLA, HTPLA is designed to survive heat treating for higher temp stability in a no/minimal load condition to near onset of melting (155 C). That's an astonishing improvement in thermal stability compared to standard PLA after a quick bake in the oven after printing.

In as little as 5-10 minutes for small, thin parts, HTPLA quickly crystallizes in an oven at 95-115 C (200-240 F) to become more stiff & hold form above glass transition (60 C). Depending on part geometry, setup & technique, parts can deform and shrink. Best results are with flat and/or supported parts with 100% infill. In this instance we experienced x/y shrinkage of about 2% & growth of about 1% in z.

Be sure to avoid hot spots (non-radiating surfaces & no glowing coils) in the oven used for baking & experiment before baking a prized part. Un-printed filament works great for experimentation & translucent makes the transformation most visible! Heat treating is an art, but the resulting improved thermal performance, if needed, is well-worth exploring. You'll be shocked by the improved thermal stability of your HTPLA parts!!!

 

High Temperature PLA ( HTPLA )

Looking for increased heat resistance without the need to switch to ABS? Protopasta High Temperature PLA offers heat deflection of up to 88° C (190.4° F) compared to standard PLA of 45-54° C (113-135° F). This makes it a great choice for moving parts (gears, RepRap pieces, etc) or prints that would face moderately high temperatures. Our High Temperature PLA is white, but can be painted after annealing.

What is it made out of?
Protopasta High Temperature PLA is made from a mineral filled, impact modified PLA with a nucleating agent to help promote crystallization. Crystallization after printing is what gives this material added heat resistance, so post-print annealing is essential to activate the heat deflection qualities of this material.
How do I anneal my print?
You can anneal your finished prints several ways, the two easiest ways are by using hot (but not boiling) water or by placing it in a low temperature oven (newer oven models only). Follow these steps:
  • Water Method: Find a pot large enough to hold your print and fill it halfway with water. On medium heat, heat the water until it reaches 95-115 C (200-240 F) (a cooking thermometer works great for this), turn the heat to low and submerge the print in the warm water bath for 6-10 minutes. Placing a lid on your pot will help the water maintain temperature.
  • Oven Method: Many newer ovens often have low temperature settings (sometimes called "keep warm" or "bread proof"). Set your oven to 95-115 C (200-240 F), place your finished print on a tray, and set it in the oven for 6-10 minutes.
  • SUPPORT YOUR PRINT! Because the annealing process will soften the plastic somewhat, it's best to support your print during this process.
What temperature should I print it at?
Because 3D printers vary so much from model to model, and because many RepRap printers combine parts from several manufactures, we can't provide the optimum temperature for your machine. Generally, our customers find it prints just like standard PLA on their machines (at around 210° C), though others find success running it a bit hotter (around 220° C).Do I need a heated bed? No, High Temp PLA does not require a heated bed or an enclosure.

Getting Started with Proto-pasta PLAs including HTPLA

We've created this page to bring you a premium PLA and HTPLA printing experience that rivals our premium material. Follow below to improve your 3D printing experience. In other words, here's your shortcut to awesomeness with pasta. If at the end of this document you have questions or need assistance, please contact us at [email protected].

Filament Handling

Loose coils can be very tricky to manage. Going cowboy on your spool handling can quickly end up in a frustrating, tangled mess. Keep your loose coils wrangled with a spool holder like masterspool for a more trouble-free experience. Find out more about loose coil handling in Keith's blog post.

And for spooled filament, never let go of the loose end. When not in the printer extruder, tuck it away in the cardboard spool's corrugation! Also, avoid sharp bends and excessive force when loading filament into your printer.

Print settings

At Proto-pasta, we make high quality filament. We aspire to make exceptional results easy, but a positive result is very much dependent on your hardware, set-up, adjustments, and process parameters. Matching hardware with process and material for a positive experience is not always straight-forward, but you can start by pairing the following settings with your printer for a good starting point, then tune or troubleshoot as required.

Example settings for typical printer

  • Nozzle size = 0.4 mm (Standard to most printers & balances detail with productivity.)
  • Extrusion width = 0.45 mm (Typically larger than nozzle size. If using a larger nozzle diameter, be sure to set the extrusion width larger than that nozzle diameter.)
  • Layer thickness = 0.15 mm (For a balance of speed, quality & reliability.)
  • Speed(s) = 15-45 mm/s (Respecting mechanical and volume flow limits. Stay within the recommended speed range but apply slower speeds to the walls and faster speeds to the infill.)
  • Volume flow rate(s) = 1-3 cu mm/s (The result of above speed range, width, and layer thickness. Respect hardware and geometry limitations.)
  • Typical temperature = 215 C +/- 10 C (Matching material, hardware, and volume flow rate.)

Volume flow rate together with temperature dictates how melted the material is. This is hardware & condition dependent based on hot end, nozzle & extruder type, material & manufacturer as well as layer fan type, position & settings. Extrusion width, layer thickness & speed changes affect volume flow which may change required/desired temperature.

Additional settings of note

  • “Grid” infill type at 20-30% - “connect infill lines” unchecked (off).
  • Minimum 3 shells & 4 top/bottom layers for good surface quality.
  • Layer fan set to cool enough for build rate, but not so aggressive as to fail process by over-cooling nozzle and heater block.

Validation and fine-tuning

Post your prints & tag us @Proto_pasta on Twitter and InstagramNeed more help? Consider typical pitfalls and fixes below.

Typical pitfalls

  • Exceeding hardware capabilities.
  • Mismatch of flow rate and temperature.
  • Excessive nozzle cooling from layer fan yielding lower heater block and/or nozzle temperatures than set point.
  • Hardware shortcomings such as MK3 heat break, poor nozzle diameter, or other hangups.
  • Poor assembly or adjustment of components.
  • Excessive retraction distance or number of retractions.
  • Inaccurate flow with missing cross-sections or wall thickness not matching extrusion width software setting.

Typical Fixes

  • Heat break replacement with OEM, straight-through design and defect-free, smooth bore.
  • Proper assembly of components without plastic oozing gaps & with thermal grease.
  • Lightly oiling filament, but careful, a little goes a long way.
  • Reducing layer fan speed and/or isolating from heater block and nozzle.
  • Installing heater block sock to isolate heater block & nozzle from layer fan.
  • Increasing temperature to flow past internal hang-ups.
  • Reduce speed and/or choose a single speed for a single volume flow
  • Consider drive gear tension adjustment, bowden tube coupling/replacement, and spool mounting

We visited Joel and ended up with a helpful video on the subject:

 

Para uma correcta manutenção da sua impressora 3D, recomendamos sempre que trocar de material de filamento 3D,  a efectuar uma purga com filamento especial de limpeza.
Desta forma garante que não ficam vestígios de material nas paredes do nozzle, evitando o acumular de crosta que é criado sempre que efectua trocas de material.
Com este produto evita problema como "clogs" e "jams" e fará com que o seu nozzle mantenha-se sempre limpo, durando muito mais tempo.
Poderá encontrar a partir de 1.49€  no seguinte LINK

 

 

3D lac comprar em Portugal

Para obter maior aderência à superfície da sua  impressora 3D recomendamos a aplicar 3DLAC  na base da plataforma.

Poderá encontrar no seguinte LINK

 

 

Este material é altamente higroscópico, absorvendo rapidamente a humidade do ar passados poucos minutos após aberto, impossibilitando desta forma a correcta impressão 3D do mesmo. O resultado das impressões 3D de materiais com humidade tendem a ser frágeis e de acabamento irregular ou em certos casos, torna-se simplesmente impossíveis de imprimir.
Deverá de usar soluções de caixas fechadas com dessecante como sílica ou caixas próprias secadoras de filamento.
Poderá encontrar  no seguinte LINK

 

 

Download: 
Technical and Safety Data Sheet

 

50g- Rolo
HTPLA Cloverleaf Metallic Green HTPLA
- Cor
1.75mm (+-0.05mm)
- Espessura / Tolerância de diâmetro
Muito Fácil
- Facilidade de Impressão




Não há 2º lugar para terminar!
HTPLA Second to None Silver Metallic é uma combinação vencedora de pérolas de prata média e fina com um toque de preto.
Uma alternativa mais opaca e brilhante ao "Spittin' Seeds Gray". Compare com Silver Smoke, que é translúcido sem pérola ou brilho. O Stardust não tem pérola mas muito brilho.
Apresentado em Endless Pastabilities Junho 2021 entrega
Concebido em colaboração com Luke Goodman (Out of Darts) & produzido por Protoplant, fabricantes de Protopasta

 

 

ProtoPasta é uma empresa situada nos Estados Unidos da América, de produção de filamentos para impressão 3D de alta qualidade.
Caracterizada pelos rolos feitos em cartão, esta marca é mundialmente famosa  por ser especializada em materiais como PLA e ABS modificados com outros materiais, como o PLA Magnético; o PLA Condutivo; PLA de fibra de carbono; HTPLA de cobre, latão ou bronze; ou o ABS-PC.


 

 

Specs

Semi crystalline, heat treatable PLA for high temp use

Density: 1.24 g/cc
Length: 346 m/kg (1.75) 130 m/kg (2.85)
Typical Printing Temp: 205-225 C
Glass Transition (Tg)*: 60 C
Peak Crystallization (Tc)**: 95-115 C
Onset to Melt (Tm)***: 155 C
Typical change when heat treated: -2% x/y +1% z

Link to Safety Data Page

*max use with no heat treat & max platform temp
**heat treating @ temp 10+ min depending on size/mass
***max use when heat treated (annealed or crystallized)

Print

HTPLA prints well at 205-225 C, however it's important to match temp to your hardware & volume flow rate. With a typical hotend, you should be able to print at 205 C without jamming at a low flow rate. In machines with hardware that tends towards jamming, consider this video with Joel Telling.

Lower volume flows require lower temps, while higher volume flows require higher temps. In the previously-mentioned video, one way to overcome jamming is to set your temp to a higher-than-typical 240 C. This should then be matched with a high flow rate for a quality printing result.

For direct drives with a short distance between drive gears & nozzle, volume flows can approach 7-8 cubic mm/s or more if printing hot to overcome jamming. For bowden tubes where the distance between drive gear & nozzle are great or less powerful hotends, as little as 2 and as much as 4 cubic mm/s may be the limit. Beware of unintended speed changes from faster infills & slowing down for outlines or short layers. Consider our Ultimaker-specific blog for more on this topic.

A constant speed throughout the part is ideal from an extrusion perspective. Knowing your extrusion width, layer thickness & speed you can calculate your volume flow rate with the calculator like found in the previously-mentioned Ultimaker blog. Alternatively, if you know your volume flow rate limit, extrusion width & layer thickness, you can calculate your speed limit.

Heat Treat

PLA & HTPLA are amorphous in structure as printed (no heat treating) & though both are adequate performers in an office environment, they have poor temperature stability, loosing significant stiffness at temps nearing 60 C. Different than standard PLA, HTPLA is designed to survive heat treating for higher temp stability in a no/minimal load condition to near onset of melting (155 C). That's an astonishing improvement in thermal stability compared to standard PLA after a quick bake in the oven after printing.

In as little as 5-10 minutes for small, thin parts, HTPLA quickly crystallizes in an oven at 95-115 C (200-240 F) to become more stiff & hold form above glass transition (60 C). Depending on part geometry, setup & technique, parts can deform and shrink. Best results are with flat and/or supported parts with 100% infill. In this instance we experienced x/y shrinkage of about 2% & growth of about 1% in z.

Be sure to avoid hot spots (non-radiating surfaces & no glowing coils) in the oven used for baking & experiment before baking a prized part. Un-printed filament works great for experimentation & translucent makes the transformation most visible! Heat treating is an art, but the resulting improved thermal performance, if needed, is well-worth exploring. You'll be shocked by the improved thermal stability of your HTPLA parts!!!

 

High Temperature PLA ( HTPLA )

Looking for increased heat resistance without the need to switch to ABS? Protopasta High Temperature PLA offers heat deflection of up to 88° C (190.4° F) compared to standard PLA of 45-54° C (113-135° F). This makes it a great choice for moving parts (gears, RepRap pieces, etc) or prints that would face moderately high temperatures. Our High Temperature PLA is white, but can be painted after annealing.

What is it made out of?
Protopasta High Temperature PLA is made from a mineral filled, impact modified PLA with a nucleating agent to help promote crystallization. Crystallization after printing is what gives this material added heat resistance, so post-print annealing is essential to activate the heat deflection qualities of this material.
How do I anneal my print?
You can anneal your finished prints several ways, the two easiest ways are by using hot (but not boiling) water or by placing it in a low temperature oven (newer oven models only). Follow these steps:
  • Water Method: Find a pot large enough to hold your print and fill it halfway with water. On medium heat, heat the water until it reaches 95-115 C (200-240 F) (a cooking thermometer works great for this), turn the heat to low and submerge the print in the warm water bath for 6-10 minutes. Placing a lid on your pot will help the water maintain temperature.
  • Oven Method: Many newer ovens often have low temperature settings (sometimes called "keep warm" or "bread proof"). Set your oven to 95-115 C (200-240 F), place your finished print on a tray, and set it in the oven for 6-10 minutes.
  • SUPPORT YOUR PRINT! Because the annealing process will soften the plastic somewhat, it's best to support your print during this process.
What temperature should I print it at?
Because 3D printers vary so much from model to model, and because many RepRap printers combine parts from several manufactures, we can't provide the optimum temperature for your machine. Generally, our customers find it prints just like standard PLA on their machines (at around 210° C), though others find success running it a bit hotter (around 220° C).Do I need a heated bed? No, High Temp PLA does not require a heated bed or an enclosure.

Getting Started with Proto-pasta PLAs including HTPLA

We've created this page to bring you a premium PLA and HTPLA printing experience that rivals our premium material. Follow below to improve your 3D printing experience. In other words, here's your shortcut to awesomeness with pasta. If at the end of this document you have questions or need assistance, please contact us at [email protected].

Filament Handling

Loose coils can be very tricky to manage. Going cowboy on your spool handling can quickly end up in a frustrating, tangled mess. Keep your loose coils wrangled with a spool holder like masterspool for a more trouble-free experience. Find out more about loose coil handling in Keith's blog post.

And for spooled filament, never let go of the loose end. When not in the printer extruder, tuck it away in the cardboard spool's corrugation! Also, avoid sharp bends and excessive force when loading filament into your printer.

Print settings

At Proto-pasta, we make high quality filament. We aspire to make exceptional results easy, but a positive result is very much dependent on your hardware, set-up, adjustments, and process parameters. Matching hardware with process and material for a positive experience is not always straight-forward, but you can start by pairing the following settings with your printer for a good starting point, then tune or troubleshoot as required.

Example settings for typical printer

  • Nozzle size = 0.4 mm (Standard to most printers & balances detail with productivity.)
  • Extrusion width = 0.45 mm (Typically larger than nozzle size. If using a larger nozzle diameter, be sure to set the extrusion width larger than that nozzle diameter.)
  • Layer thickness = 0.15 mm (For a balance of speed, quality & reliability.)
  • Speed(s) = 15-45 mm/s (Respecting mechanical and volume flow limits. Stay within the recommended speed range but apply slower speeds to the walls and faster speeds to the infill.)
  • Volume flow rate(s) = 1-3 cu mm/s (The result of above speed range, width, and layer thickness. Respect hardware and geometry limitations.)
  • Typical temperature = 215 C +/- 10 C (Matching material, hardware, and volume flow rate.)

Volume flow rate together with temperature dictates how melted the material is. This is hardware & condition dependent based on hot end, nozzle & extruder type, material & manufacturer as well as layer fan type, position & settings. Extrusion width, layer thickness & speed changes affect volume flow which may change required/desired temperature.

Additional settings of note

  • “Grid” infill type at 20-30% - “connect infill lines” unchecked (off).
  • Minimum 3 shells & 4 top/bottom layers for good surface quality.
  • Layer fan set to cool enough for build rate, but not so aggressive as to fail process by over-cooling nozzle and heater block.

Validation and fine-tuning

Post your prints & tag us @Proto_pasta on Twitter and InstagramNeed more help? Consider typical pitfalls and fixes below.

Typical pitfalls

  • Exceeding hardware capabilities.
  • Mismatch of flow rate and temperature.
  • Excessive nozzle cooling from layer fan yielding lower heater block and/or nozzle temperatures than set point.
  • Hardware shortcomings such as MK3 heat break, poor nozzle diameter, or other hangups.
  • Poor assembly or adjustment of components.
  • Excessive retraction distance or number of retractions.
  • Inaccurate flow with missing cross-sections or wall thickness not matching extrusion width software setting.

Typical Fixes

  • Heat break replacement with OEM, straight-through design and defect-free, smooth bore.
  • Proper assembly of components without plastic oozing gaps & with thermal grease.
  • Lightly oiling filament, but careful, a little goes a long way.
  • Reducing layer fan speed and/or isolating from heater block and nozzle.
  • Installing heater block sock to isolate heater block & nozzle from layer fan.
  • Increasing temperature to flow past internal hang-ups.
  • Reduce speed and/or choose a single speed for a single volume flow
  • Consider drive gear tension adjustment, bowden tube coupling/replacement, and spool mounting

We visited Joel and ended up with a helpful video on the subject:

 

Para uma correcta manutenção da sua impressora 3D, recomendamos sempre que trocar de material de filamento 3D,  a efectuar uma purga com filamento especial de limpeza.
Desta forma garante que não ficam vestígios de material nas paredes do nozzle, evitando o acumular de crosta que é criado sempre que efectua trocas de material.
Com este produto evita problema como "clogs" e "jams" e fará com que o seu nozzle mantenha-se sempre limpo, durando muito mais tempo.
Poderá encontrar a partir de 1.49€  no seguinte LINK

 

 

3D lac comprar em Portugal

Para obter maior aderência à superfície da sua  impressora 3D recomendamos a aplicar 3DLAC  na base da plataforma.

Poderá encontrar no seguinte LINK

 

 

Este material é altamente higroscópico, absorvendo rapidamente a humidade do ar passados poucos minutos após aberto, impossibilitando desta forma a correcta impressão 3D do mesmo. O resultado das impressões 3D de materiais com humidade tendem a ser frágeis e de acabamento irregular ou em certos casos, torna-se simplesmente impossíveis de imprimir.
Deverá de usar soluções de caixas fechadas com dessecante como sílica ou caixas próprias secadoras de filamento.
Poderá encontrar  no seguinte LINK

 

 

Download: 
Technical and Safety Data Sheet

 

50g- Rolo
HTPLA Second to None Silver Metallic HTPLA
- Cor
1.75mm (+-0.05mm)
- Espessura / Tolerância de diâmetro
Muito Fácil
- Facilidade de Impressão




Criado a partir do nosso Premium High Temp PLA (HTPLA ), este é o HTPLA Double Espresso Metallic Brown da Proto-pasta!

Comece o seu dia com este filamento metálico PLA castanho brilhante com uma dose dupla de café expresso.

Este filamento metálico PLA não contém metal real e tem pouco risco de entupir ou usar o seu bocal, e não fará uma bagunça brilhante, mas tenha cuidado para que a impressão seja certamente viciante!

 

 

ProtoPasta é uma empresa situada nos Estados Unidos da América, de produção de filamentos para impressão 3D de alta qualidade.
Caracterizada pelos rolos feitos em cartão, esta marca é mundialmente famosa  por ser especializada em materiais como PLA e ABS modificados com outros materiais, como o PLA Magnético; o PLA Condutivo; PLA de fibra de carbono; HTPLA de cobre, latão ou bronze; ou o ABS-PC.


 

 

 

Specs

Semi crystalline, heat treatable PLA for high temp use

Density: 1.24 g/cc
Length: 346 m/kg (1.75) 130 m/kg (2.85)
Typical Printing Temp: 205-225 C
Glass Transition (Tg)*: 60 C
Peak Crystallization (Tc)**: 95-115 C
Onset to Melt (Tm)***: 155 C
Typical change when heat treated: -2% x/y +1% z

Link to Safety Data Page

*max use with no heat treat & max platform temp
**heat treating @ temp 10+ min depending on size/mass
***max use when heat treated (annealed or crystallized)

Print

HTPLA prints well at 205-225 C, however it's important to match temp to your hardware & volume flow rate. With a typical hotend, you should be able to print at 205 C without jamming at a low flow rate. In machines with hardware that tends towards jamming, consider this video with Joel Telling.

Lower volume flows require lower temps, while higher volume flows require higher temps. In the previously-mentioned video, one way to overcome jamming is to set your temp to a higher-than-typical 240 C. This should then be matched with a high flow rate for a quality printing result.

For direct drives with a short distance between drive gears & nozzle, volume flows can approach 7-8 cubic mm/s or more if printing hot to overcome jamming. For bowden tubes where the distance between drive gear & nozzle are great or less powerful hotends, as little as 2 and as much as 4 cubic mm/s may be the limit. Beware of unintended speed changes from faster infills & slowing down for outlines or short layers. Consider our Ultimaker-specific blog for more on this topic.

A constant speed throughout the part is ideal from an extrusion perspective. Knowing your extrusion width, layer thickness & speed you can calculate your volume flow rate with the calculator like found in the previously-mentioned Ultimaker blog. Alternatively, if you know your volume flow rate limit, extrusion width & layer thickness, you can calculate your speed limit.

Heat Treat

PLA & HTPLA are amorphous in structure as printed (no heat treating) & though both are adequate performers in an office environment, they have poor temperature stability, loosing significant stiffness at temps nearing 60 C. Different than standard PLA, HTPLA is designed to survive heat treating for higher temp stability in a no/minimal load condition to near onset of melting (155 C). That's an astonishing improvement in thermal stability compared to standard PLA after a quick bake in the oven after printing.

In as little as 5-10 minutes for small, thin parts, HTPLA quickly crystallizes in an oven at 95-115 C (200-240 F) to become more stiff & hold form above glass transition (60 C). Depending on part geometry, setup & technique, parts can deform and shrink. Best results are with flat and/or supported parts with 100% infill. In this instance we experienced x/y shrinkage of about 2% & growth of about 1% in z.

Be sure to avoid hot spots (non-radiating surfaces & no glowing coils) in the oven used for baking & experiment before baking a prized part. Un-printed filament works great for experimentation & translucent makes the transformation most visible! Heat treating is an art, but the resulting improved thermal performance, if needed, is well-worth exploring. You'll be shocked by the improved thermal stability of your HTPLA parts!!!

 

High Temperature PLA ( HTPLA )

Looking for increased heat resistance without the need to switch to ABS? Protopasta High Temperature PLA offers heat deflection of up to 88° C (190.4° F) compared to standard PLA of 45-54° C (113-135° F). This makes it a great choice for moving parts (gears, RepRap pieces, etc) or prints that would face moderately high temperatures. Our High Temperature PLA is white, but can be painted after annealing.

What is it made out of?
Protopasta High Temperature PLA is made from a mineral filled, impact modified PLA with a nucleating agent to help promote crystallization. Crystallization after printing is what gives this material added heat resistance, so post-print annealing is essential to activate the heat deflection qualities of this material.
How do I anneal my print?
You can anneal your finished prints several ways, the two easiest ways are by using hot (but not boiling) water or by placing it in a low temperature oven (newer oven models only). Follow these steps:
  • Water Method: Find a pot large enough to hold your print and fill it halfway with water. On medium heat, heat the water until it reaches 95-115 C (200-240 F) (a cooking thermometer works great for this), turn the heat to low and submerge the print in the warm water bath for 6-10 minutes. Placing a lid on your pot will help the water maintain temperature.
  • Oven Method: Many newer ovens often have low temperature settings (sometimes called "keep warm" or "bread proof"). Set your oven to 95-115 C (200-240 F), place your finished print on a tray, and set it in the oven for 6-10 minutes.
  • SUPPORT YOUR PRINT! Because the annealing process will soften the plastic somewhat, it's best to support your print during this process.
What temperature should I print it at?
Because 3D printers vary so much from model to model, and because many RepRap printers combine parts from several manufactures, we can't provide the optimum temperature for your machine. Generally, our customers find it prints just like standard PLA on their machines (at around 210° C), though others find success running it a bit hotter (around 220° C).Do I need a heated bed? No, High Temp PLA does not require a heated bed or an enclosure.

Getting Started with Proto-pasta PLAs including HTPLA

We've created this page to bring you a premium PLA and HTPLA printing experience that rivals our premium material. Follow below to improve your 3D printing experience. In other words, here's your shortcut to awesomeness with pasta. If at the end of this document you have questions or need assistance, please contact us at [email protected].

Filament Handling

Loose coils can be very tricky to manage. Going cowboy on your spool handling can quickly end up in a frustrating, tangled mess. Keep your loose coils wrangled with a spool holder like masterspool for a more trouble-free experience. Find out more about loose coil handling in Keith's blog post.

And for spooled filament, never let go of the loose end. When not in the printer extruder, tuck it away in the cardboard spool's corrugation! Also, avoid sharp bends and excessive force when loading filament into your printer.

Print settings

At Proto-pasta, we make high quality filament. We aspire to make exceptional results easy, but a positive result is very much dependent on your hardware, set-up, adjustments, and process parameters. Matching hardware with process and material for a positive experience is not always straight-forward, but you can start by pairing the following settings with your printer for a good starting point, then tune or troubleshoot as required.

Example settings for typical printer

  • Nozzle size = 0.4 mm (Standard to most printers & balances detail with productivity.)
  • Extrusion width = 0.45 mm (Typically larger than nozzle size. If using a larger nozzle diameter, be sure to set the extrusion width larger than that nozzle diameter.)
  • Layer thickness = 0.15 mm (For a balance of speed, quality & reliability.)
  • Speed(s) = 15-45 mm/s (Respecting mechanical and volume flow limits. Stay within the recommended speed range but apply slower speeds to the walls and faster speeds to the infill.)
  • Volume flow rate(s) = 1-3 cu mm/s (The result of above speed range, width, and layer thickness. Respect hardware and geometry limitations.)
  • Typical temperature = 215 C +/- 10 C (Matching material, hardware, and volume flow rate.)

Volume flow rate together with temperature dictates how melted the material is. This is hardware & condition dependent based on hot end, nozzle & extruder type, material & manufacturer as well as layer fan type, position & settings. Extrusion width, layer thickness & speed changes affect volume flow which may change required/desired temperature.

Additional settings of note

  • “Grid” infill type at 20-30% - “connect infill lines” unchecked (off).
  • Minimum 3 shells & 4 top/bottom layers for good surface quality.
  • Layer fan set to cool enough for build rate, but not so aggressive as to fail process by over-cooling nozzle and heater block.

Validation and fine-tuning

Post your prints & tag us @Proto_pasta on Twitter and InstagramNeed more help? Consider typical pitfalls and fixes below.

Typical pitfalls

  • Exceeding hardware capabilities.
  • Mismatch of flow rate and temperature.
  • Excessive nozzle cooling from layer fan yielding lower heater block and/or nozzle temperatures than set point.
  • Hardware shortcomings such as MK3 heat break, poor nozzle diameter, or other hangups.
  • Poor assembly or adjustment of components.
  • Excessive retraction distance or number of retractions.
  • Inaccurate flow with missing cross-sections or wall thickness not matching extrusion width software setting.

Typical Fixes

  • Heat break replacement with OEM, straight-through design and defect-free, smooth bore.
  • Proper assembly of components without plastic oozing gaps & with thermal grease.
  • Lightly oiling filament, but careful, a little goes a long way.
  • Reducing layer fan speed and/or isolating from heater block and nozzle.
  • Installing heater block sock to isolate heater block & nozzle from layer fan.
  • Increasing temperature to flow past internal hang-ups.
  • Reduce speed and/or choose a single speed for a single volume flow
  • Consider drive gear tension adjustment, bowden tube coupling/replacement, and spool mounting

We visited Joel and ended up with a helpful video on the subject:

 

Para uma correcta manutenção da sua impressora 3D, recomendamos sempre que trocar de material de filamento 3D,  a efectuar uma purga com filamento especial de limpeza.
Desta forma garante que não ficam vestígios de material nas paredes do nozzle, evitando o acumular de crosta que é criado sempre que efectua trocas de material.
Com este produto evita problema como "clogs" e "jams" e fará com que o seu nozzle mantenha-se sempre limpo, durando muito mais tempo.
Poderá encontrar a partir de 1.49€  no seguinte LINK

 

 

3D lac comprar em Portugal

Para obter maior aderência à superfície da sua  impressora 3D recomendamos a aplicar 3DLAC  na base da plataforma.

Poderá encontrar no seguinte LINK

 

 

Este material é altamente higroscópico, absorvendo rapidamente a humidade do ar passados poucos minutos após aberto, impossibilitando desta forma a correcta impressão 3D do mesmo. O resultado das impressões 3D de materiais com humidade tendem a ser frágeis e de acabamento irregular ou em certos casos, torna-se simplesmente impossíveis de imprimir.
Deverá de usar soluções de caixas fechadas com dessecante como sílica ou caixas próprias secadoras de filamento.
Poderá encontrar  no seguinte LINK

 

 

Download: 
Technical and Safety Data Sheet

 

50g- Rolo
HTPLA Double Espresso Metallic Brown HTPLA
- Cor
1.75mm (+-0.05mm)
- Espessura / Tolerância de diâmetro
Muito Fácil
- Facilidade de Impressão




O seu novo vermelho favorito!
HTPLA Heartthrob Metallic Red é um vermelho profundo e rico com pérolas de prata e ouro para textura, equilíbrio e complexidade.
Mais escuro que o Vermelho de Maçã Doce, reminiscente do Sangue de Amie do Meu Inimigo Vermelho e o Vermelho do Caos de Garrett.
Destaque em Endless Pastabilities Fevereiro 2021 entrega
Concebido e produzido por Protoplant, fabricantes de Protopasta

 

 

ProtoPasta é uma empresa situada nos Estados Unidos da América, de produção de filamentos para impressão 3D de alta qualidade.
Caracterizada pelos rolos feitos em cartão, esta marca é mundialmente famosa  por ser especializada em materiais como PLA e ABS modificados com outros materiais, como o PLA Magnético; o PLA Condutivo; PLA de fibra de carbono; HTPLA de cobre, latão ou bronze; ou o ABS-PC.


 

 

Specs

Semi crystalline, heat treatable PLA for high temp use

Density: 1.24 g/cc
Length: 346 m/kg (1.75) 130 m/kg (2.85)
Typical Printing Temp: 205-225 C
Glass Transition (Tg)*: 60 C
Peak Crystallization (Tc)**: 95-115 C
Onset to Melt (Tm)***: 155 C
Typical change when heat treated: -2% x/y +1% z

Link to Safety Data Page

*max use with no heat treat & max platform temp
**heat treating @ temp 10+ min depending on size/mass
***max use when heat treated (annealed or crystallized)

Print

HTPLA prints well at 205-225 C, however it's important to match temp to your hardware & volume flow rate. With a typical hotend, you should be able to print at 205 C without jamming at a low flow rate. In machines with hardware that tends towards jamming, consider this video with Joel Telling.

Lower volume flows require lower temps, while higher volume flows require higher temps. In the previously-mentioned video, one way to overcome jamming is to set your temp to a higher-than-typical 240 C. This should then be matched with a high flow rate for a quality printing result.

For direct drives with a short distance between drive gears & nozzle, volume flows can approach 7-8 cubic mm/s or more if printing hot to overcome jamming. For bowden tubes where the distance between drive gear & nozzle are great or less powerful hotends, as little as 2 and as much as 4 cubic mm/s may be the limit. Beware of unintended speed changes from faster infills & slowing down for outlines or short layers. Consider our Ultimaker-specific blog for more on this topic.

A constant speed throughout the part is ideal from an extrusion perspective. Knowing your extrusion width, layer thickness & speed you can calculate your volume flow rate with the calculator like found in the previously-mentioned Ultimaker blog. Alternatively, if you know your volume flow rate limit, extrusion width & layer thickness, you can calculate your speed limit.

Heat Treat

PLA & HTPLA are amorphous in structure as printed (no heat treating) & though both are adequate performers in an office environment, they have poor temperature stability, loosing significant stiffness at temps nearing 60 C. Different than standard PLA, HTPLA is designed to survive heat treating for higher temp stability in a no/minimal load condition to near onset of melting (155 C). That's an astonishing improvement in thermal stability compared to standard PLA after a quick bake in the oven after printing.

In as little as 5-10 minutes for small, thin parts, HTPLA quickly crystallizes in an oven at 95-115 C (200-240 F) to become more stiff & hold form above glass transition (60 C). Depending on part geometry, setup & technique, parts can deform and shrink. Best results are with flat and/or supported parts with 100% infill. In this instance we experienced x/y shrinkage of about 2% & growth of about 1% in z.

Be sure to avoid hot spots (non-radiating surfaces & no glowing coils) in the oven used for baking & experiment before baking a prized part. Un-printed filament works great for experimentation & translucent makes the transformation most visible! Heat treating is an art, but the resulting improved thermal performance, if needed, is well-worth exploring. You'll be shocked by the improved thermal stability of your HTPLA parts!!!

 

High Temperature PLA ( HTPLA )

Looking for increased heat resistance without the need to switch to ABS? Protopasta High Temperature PLA offers heat deflection of up to 88° C (190.4° F) compared to standard PLA of 45-54° C (113-135° F). This makes it a great choice for moving parts (gears, RepRap pieces, etc) or prints that would face moderately high temperatures. Our High Temperature PLA is white, but can be painted after annealing.

What is it made out of?
Protopasta High Temperature PLA is made from a mineral filled, impact modified PLA with a nucleating agent to help promote crystallization. Crystallization after printing is what gives this material added heat resistance, so post-print annealing is essential to activate the heat deflection qualities of this material.
How do I anneal my print?
You can anneal your finished prints several ways, the two easiest ways are by using hot (but not boiling) water or by placing it in a low temperature oven (newer oven models only). Follow these steps:
  • Water Method: Find a pot large enough to hold your print and fill it halfway with water. On medium heat, heat the water until it reaches 95-115 C (200-240 F) (a cooking thermometer works great for this), turn the heat to low and submerge the print in the warm water bath for 6-10 minutes. Placing a lid on your pot will help the water maintain temperature.
  • Oven Method: Many newer ovens often have low temperature settings (sometimes called "keep warm" or "bread proof"). Set your oven to 95-115 C (200-240 F), place your finished print on a tray, and set it in the oven for 6-10 minutes.
  • SUPPORT YOUR PRINT! Because the annealing process will soften the plastic somewhat, it's best to support your print during this process.
What temperature should I print it at?
Because 3D printers vary so much from model to model, and because many RepRap printers combine parts from several manufactures, we can't provide the optimum temperature for your machine. Generally, our customers find it prints just like standard PLA on their machines (at around 210° C), though others find success running it a bit hotter (around 220° C).Do I need a heated bed? No, High Temp PLA does not require a heated bed or an enclosure.

Getting Started with Proto-pasta PLAs including HTPLA

We've created this page to bring you a premium PLA and HTPLA printing experience that rivals our premium material. Follow below to improve your 3D printing experience. In other words, here's your shortcut to awesomeness with pasta. If at the end of this document you have questions or need assistance, please contact us at [email protected].

Filament Handling

Loose coils can be very tricky to manage. Going cowboy on your spool handling can quickly end up in a frustrating, tangled mess. Keep your loose coils wrangled with a spool holder like masterspool for a more trouble-free experience. Find out more about loose coil handling in Keith's blog post.

And for spooled filament, never let go of the loose end. When not in the printer extruder, tuck it away in the cardboard spool's corrugation! Also, avoid sharp bends and excessive force when loading filament into your printer.

Print settings

At Proto-pasta, we make high quality filament. We aspire to make exceptional results easy, but a positive result is very much dependent on your hardware, set-up, adjustments, and process parameters. Matching hardware with process and material for a positive experience is not always straight-forward, but you can start by pairing the following settings with your printer for a good starting point, then tune or troubleshoot as required.

Example settings for typical printer

  • Nozzle size = 0.4 mm (Standard to most printers & balances detail with productivity.)
  • Extrusion width = 0.45 mm (Typically larger than nozzle size. If using a larger nozzle diameter, be sure to set the extrusion width larger than that nozzle diameter.)
  • Layer thickness = 0.15 mm (For a balance of speed, quality & reliability.)
  • Speed(s) = 15-45 mm/s (Respecting mechanical and volume flow limits. Stay within the recommended speed range but apply slower speeds to the walls and faster speeds to the infill.)
  • Volume flow rate(s) = 1-3 cu mm/s (The result of above speed range, width, and layer thickness. Respect hardware and geometry limitations.)
  • Typical temperature = 215 C +/- 10 C (Matching material, hardware, and volume flow rate.)

Volume flow rate together with temperature dictates how melted the material is. This is hardware & condition dependent based on hot end, nozzle & extruder type, material & manufacturer as well as layer fan type, position & settings. Extrusion width, layer thickness & speed changes affect volume flow which may change required/desired temperature.

Additional settings of note

  • “Grid” infill type at 20-30% - “connect infill lines” unchecked (off).
  • Minimum 3 shells & 4 top/bottom layers for good surface quality.
  • Layer fan set to cool enough for build rate, but not so aggressive as to fail process by over-cooling nozzle and heater block.

Validation and fine-tuning

Post your prints & tag us @Proto_pasta on Twitter and InstagramNeed more help? Consider typical pitfalls and fixes below.

Typical pitfalls

  • Exceeding hardware capabilities.
  • Mismatch of flow rate and temperature.
  • Excessive nozzle cooling from layer fan yielding lower heater block and/or nozzle temperatures than set point.
  • Hardware shortcomings such as MK3 heat break, poor nozzle diameter, or other hangups.
  • Poor assembly or adjustment of components.
  • Excessive retraction distance or number of retractions.
  • Inaccurate flow with missing cross-sections or wall thickness not matching extrusion width software setting.

Typical Fixes

  • Heat break replacement with OEM, straight-through design and defect-free, smooth bore.
  • Proper assembly of components without plastic oozing gaps & with thermal grease.
  • Lightly oiling filament, but careful, a little goes a long way.
  • Reducing layer fan speed and/or isolating from heater block and nozzle.
  • Installing heater block sock to isolate heater block & nozzle from layer fan.
  • Increasing temperature to flow past internal hang-ups.
  • Reduce speed and/or choose a single speed for a single volume flow
  • Consider drive gear tension adjustment, bowden tube coupling/replacement, and spool mounting

We visited Joel and ended up with a helpful video on the subject:

 

Para uma correcta manutenção da sua impressora 3D, recomendamos sempre que trocar de material de filamento 3D,  a efectuar uma purga com filamento especial de limpeza.
Desta forma garante que não ficam vestígios de material nas paredes do nozzle, evitando o acumular de crosta que é criado sempre que efectua trocas de material.
Com este produto evita problema como "clogs" e "jams" e fará com que o seu nozzle mantenha-se sempre limpo, durando muito mais tempo.
Poderá encontrar a partir de 1.49€  no seguinte LINK

 

 

3D lac comprar em Portugal

Para obter maior aderência à superfície da sua  impressora 3D recomendamos a aplicar 3DLAC  na base da plataforma.

Poderá encontrar no seguinte LINK

 

 

Este material é altamente higroscópico, absorvendo rapidamente a humidade do ar passados poucos minutos após aberto, impossibilitando desta forma a correcta impressão 3D do mesmo. O resultado das impressões 3D de materiais com humidade tendem a ser frágeis e de acabamento irregular ou em certos casos, torna-se simplesmente impossíveis de imprimir.
Deverá de usar soluções de caixas fechadas com dessecante como sílica ou caixas próprias secadoras de filamento.
Poderá encontrar  no seguinte LINK

 

 

Download: 
Technical and Safety Data Sheet

 

50g- Rolo
HTPLA Heartthrob Metallic Red HTPLA
- Cor
1.75mm (+-0.05mm)
- Espessura / Tolerância de diâmetro
Muito Fácil
- Facilidade de Impressão




Introduzindo um lançamento especial e sazonal: HTPLA Winter Blue Glitter Flake Metallic . Nascido do Projecto Winterfill, a ideia era capturar o espírito da estação que se aproximava em forma de filamento. Criado a partir do nosso HTPLA v2 de alta qualidade e translúcido, introduzimos cuidadosamente a quantidade certa de pigmento azul e brilho para um azul fresco e invernal. Uma cor muito dinâmica e profunda, a concentração de azul cria uma cor azul claro que se pode estender tanto para um verde prateado como para um roxo escuro profundo, dependendo da forma e da luz. As partes brilhantes adicionais desaparecem por vezes e, noutras, a luz traz um acabamento gelado que faz com que o azul pareça quase coberto de neve. Tendo sido desenvolvido em Outubro, divertimo-nos a imprimir algumas abóboras enrugadas para experimentarmos a beleza rica desta cor dinâmica. Por favor, desfrute da criação de estampas festivas de férias e espalhe um bom ânimo com o Azul de Inverno Proto-pasta!

 

 

ProtoPasta é uma empresa situada nos Estados Unidos da América, de produção de filamentos para impressão 3D de alta qualidade.
Caracterizada pelos rolos feitos em cartão, esta marca é mundialmente famosa  por ser especializada em materiais como PLA e ABS modificados com outros materiais, como o PLA Magnético; o PLA Condutivo; PLA de fibra de carbono; HTPLA de cobre, latão ou bronze; ou o ABS-PC.


 

 

Specs

Semi crystalline, heat treatable PLA for high temp use

Density: 1.24 g/cc
Length: 346 m/kg (1.75) 130 m/kg (2.85)
Typical Printing Temp: 205-225 C
Glass Transition (Tg)*: 60 C
Peak Crystallization (Tc)**: 95-115 C
Onset to Melt (Tm)***: 155 C
Typical change when heat treated: -2% x/y +1% z

Link to Safety Data Page

*max use with no heat treat & max platform temp
**heat treating @ temp 10+ min depending on size/mass
***max use when heat treated (annealed or crystallized)

Print

HTPLA prints well at 205-225 C, however it's important to match temp to your hardware & volume flow rate. With a typical hotend, you should be able to print at 205 C without jamming at a low flow rate. In machines with hardware that tends towards jamming, consider this video with Joel Telling.

Lower volume flows require lower temps, while higher volume flows require higher temps. In the previously-mentioned video, one way to overcome jamming is to set your temp to a higher-than-typical 240 C. This should then be matched with a high flow rate for a quality printing result.

For direct drives with a short distance between drive gears & nozzle, volume flows can approach 7-8 cubic mm/s or more if printing hot to overcome jamming. For bowden tubes where the distance between drive gear & nozzle are great or less powerful hotends, as little as 2 and as much as 4 cubic mm/s may be the limit. Beware of unintended speed changes from faster infills & slowing down for outlines or short layers. Consider our Ultimaker-specific blog for more on this topic.

A constant speed throughout the part is ideal from an extrusion perspective. Knowing your extrusion width, layer thickness & speed you can calculate your volume flow rate with the calculator like found in the previously-mentioned Ultimaker blog. Alternatively, if you know your volume flow rate limit, extrusion width & layer thickness, you can calculate your speed limit.

Heat Treat

PLA & HTPLA are amorphous in structure as printed (no heat treating) & though both are adequate performers in an office environment, they have poor temperature stability, loosing significant stiffness at temps nearing 60 C. Different than standard PLA, HTPLA is designed to survive heat treating for higher temp stability in a no/minimal load condition to near onset of melting (155 C). That's an astonishing improvement in thermal stability compared to standard PLA after a quick bake in the oven after printing.

In as little as 5-10 minutes for small, thin parts, HTPLA quickly crystallizes in an oven at 95-115 C (200-240 F) to become more stiff & hold form above glass transition (60 C). Depending on part geometry, setup & technique, parts can deform and shrink. Best results are with flat and/or supported parts with 100% infill. In this instance we experienced x/y shrinkage of about 2% & growth of about 1% in z.

Be sure to avoid hot spots (non-radiating surfaces & no glowing coils) in the oven used for baking & experiment before baking a prized part. Un-printed filament works great for experimentation & translucent makes the transformation most visible! Heat treating is an art, but the resulting improved thermal performance, if needed, is well-worth exploring. You'll be shocked by the improved thermal stability of your HTPLA parts!!!

 

High Temperature PLA ( HTPLA )

Looking for increased heat resistance without the need to switch to ABS? Protopasta High Temperature PLA offers heat deflection of up to 88° C (190.4° F) compared to standard PLA of 45-54° C (113-135° F). This makes it a great choice for moving parts (gears, RepRap pieces, etc) or prints that would face moderately high temperatures. Our High Temperature PLA is white, but can be painted after annealing.

What is it made out of?
Protopasta High Temperature PLA is made from a mineral filled, impact modified PLA with a nucleating agent to help promote crystallization. Crystallization after printing is what gives this material added heat resistance, so post-print annealing is essential to activate the heat deflection qualities of this material.
How do I anneal my print?
You can anneal your finished prints several ways, the two easiest ways are by using hot (but not boiling) water or by placing it in a low temperature oven (newer oven models only). Follow these steps:
  • Water Method: Find a pot large enough to hold your print and fill it halfway with water. On medium heat, heat the water until it reaches 95-115 C (200-240 F) (a cooking thermometer works great for this), turn the heat to low and submerge the print in the warm water bath for 6-10 minutes. Placing a lid on your pot will help the water maintain temperature.
  • Oven Method: Many newer ovens often have low temperature settings (sometimes called "keep warm" or "bread proof"). Set your oven to 95-115 C (200-240 F), place your finished print on a tray, and set it in the oven for 6-10 minutes.
  • SUPPORT YOUR PRINT! Because the annealing process will soften the plastic somewhat, it's best to support your print during this process.
What temperature should I print it at?
Because 3D printers vary so much from model to model, and because many RepRap printers combine parts from several manufactures, we can't provide the optimum temperature for your machine. Generally, our customers find it prints just like standard PLA on their machines (at around 210° C), though others find success running it a bit hotter (around 220° C).Do I need a heated bed? No, High Temp PLA does not require a heated bed or an enclosure.

Getting Started with Proto-pasta PLAs including HTPLA

We've created this page to bring you a premium PLA and HTPLA printing experience that rivals our premium material. Follow below to improve your 3D printing experience. In other words, here's your shortcut to awesomeness with pasta. If at the end of this document you have questions or need assistance, please contact us at [email protected].

Filament Handling

Loose coils can be very tricky to manage. Going cowboy on your spool handling can quickly end up in a frustrating, tangled mess. Keep your loose coils wrangled with a spool holder like masterspool for a more trouble-free experience. Find out more about loose coil handling in Keith's blog post.

And for spooled filament, never let go of the loose end. When not in the printer extruder, tuck it away in the cardboard spool's corrugation! Also, avoid sharp bends and excessive force when loading filament into your printer.

Print settings

At Proto-pasta, we make high quality filament. We aspire to make exceptional results easy, but a positive result is very much dependent on your hardware, set-up, adjustments, and process parameters. Matching hardware with process and material for a positive experience is not always straight-forward, but you can start by pairing the following settings with your printer for a good starting point, then tune or troubleshoot as required.

Example settings for typical printer

  • Nozzle size = 0.4 mm (Standard to most printers & balances detail with productivity.)
  • Extrusion width = 0.45 mm (Typically larger than nozzle size. If using a larger nozzle diameter, be sure to set the extrusion width larger than that nozzle diameter.)
  • Layer thickness = 0.15 mm (For a balance of speed, quality & reliability.)
  • Speed(s) = 15-45 mm/s (Respecting mechanical and volume flow limits. Stay within the recommended speed range but apply slower speeds to the walls and faster speeds to the infill.)
  • Volume flow rate(s) = 1-3 cu mm/s (The result of above speed range, width, and layer thickness. Respect hardware and geometry limitations.)
  • Typical temperature = 215 C +/- 10 C (Matching material, hardware, and volume flow rate.)

Volume flow rate together with temperature dictates how melted the material is. This is hardware & condition dependent based on hot end, nozzle & extruder type, material & manufacturer as well as layer fan type, position & settings. Extrusion width, layer thickness & speed changes affect volume flow which may change required/desired temperature.

Additional settings of note

  • “Grid” infill type at 20-30% - “connect infill lines” unchecked (off).
  • Minimum 3 shells & 4 top/bottom layers for good surface quality.
  • Layer fan set to cool enough for build rate, but not so aggressive as to fail process by over-cooling nozzle and heater block.

Validation and fine-tuning

Post your prints & tag us @Proto_pasta on Twitter and InstagramNeed more help? Consider typical pitfalls and fixes below.

Typical pitfalls

  • Exceeding hardware capabilities.
  • Mismatch of flow rate and temperature.
  • Excessive nozzle cooling from layer fan yielding lower heater block and/or nozzle temperatures than set point.
  • Hardware shortcomings such as MK3 heat break, poor nozzle diameter, or other hangups.
  • Poor assembly or adjustment of components.
  • Excessive retraction distance or number of retractions.
  • Inaccurate flow with missing cross-sections or wall thickness not matching extrusion width software setting.

Typical Fixes

  • Heat break replacement with OEM, straight-through design and defect-free, smooth bore.
  • Proper assembly of components without plastic oozing gaps & with thermal grease.
  • Lightly oiling filament, but careful, a little goes a long way.
  • Reducing layer fan speed and/or isolating from heater block and nozzle.
  • Installing heater block sock to isolate heater block & nozzle from layer fan.
  • Increasing temperature to flow past internal hang-ups.
  • Reduce speed and/or choose a single speed for a single volume flow
  • Consider drive gear tension adjustment, bowden tube coupling/replacement, and spool mounting

We visited Joel and ended up with a helpful video on the subject:

 

Para uma correcta manutenção da sua impressora 3D, recomendamos sempre que trocar de material de filamento 3D,  a efectuar uma purga com filamento especial de limpeza.
Desta forma garante que não ficam vestígios de material nas paredes do nozzle, evitando o acumular de crosta que é criado sempre que efectua trocas de material.
Com este produto evita problema como "clogs" e "jams" e fará com que o seu nozzle mantenha-se sempre limpo, durando muito mais tempo.
Poderá encontrar a partir de 1.49€  no seguinte LINK

 

 

3D lac comprar em Portugal

Para obter maior aderência à superfície da sua  impressora 3D recomendamos a aplicar 3DLAC  na base da plataforma.

Poderá encontrar no seguinte LINK

 

 

Este material é altamente higroscópico, absorvendo rapidamente a humidade do ar passados poucos minutos após aberto, impossibilitando desta forma a correcta impressão 3D do mesmo. O resultado das impressões 3D de materiais com humidade tendem a ser frágeis e de acabamento irregular ou em certos casos, torna-se simplesmente impossíveis de imprimir.
Deverá de usar soluções de caixas fechadas com dessecante como sílica ou caixas próprias secadoras de filamento.
Poderá encontrar  no seguinte LINK

 

 

Download: 
Technical and Safety Data Sheet

 

50g- Rolo
HTPLA Winter Blue Glitter Flake Metallic HTPLA
- Cor
1.75mm (+-0.05mm)
- Espessura / Tolerância de diâmetro
Muito Fácil
- Facilidade de Impressão




Lembra-se da sua primeira paixoneta? Lembra-se como ele ou ela não podia fazer nada de errado e tudo sobre eles cintilava? Cuidado porque está prestes a ser atingido pelo nosso filamento metálico mais brilhante de sempre! Perfeito para presentes e partilha, espalhe o amor com o Cupido's Crush Metallic Pink HTPLA deste Valentine's e durante todo o ano! Este filamento metálico rosa PLA não contém metal real e tem pouco risco de entupir ou usar o seu nozzle, e não fará uma bagunça brilhante, mas cuidado para que a impressão seja certamente viciante!

 

 

ProtoPasta é uma empresa situada nos Estados Unidos da América, de produção de filamentos para impressão 3D de alta qualidade.
Caracterizada pelos rolos feitos em cartão, esta marca é mundialmente famosa  por ser especializada em materiais como PLA e ABS modificados com outros materiais, como o PLA Magnético; o PLA Condutivo; PLA de fibra de carbono; HTPLA de cobre, latão ou bronze; ou o ABS-PC.


 

 

Specs

Semi crystalline, heat treatable PLA for high temp use

Density: 1.24 g/cc
Length: 346 m/kg (1.75) 130 m/kg (2.85)
Typical Printing Temp: 205-225 C
Glass Transition (Tg)*: 60 C
Peak Crystallization (Tc)**: 95-115 C
Onset to Melt (Tm)***: 155 C
Typical change when heat treated: -2% x/y +1% z

Link to Safety Data Page

*max use with no heat treat & max platform temp
**heat treating @ temp 10+ min depending on size/mass
***max use when heat treated (annealed or crystallized)

Print

HTPLA prints well at 205-225 C, however it's important to match temp to your hardware & volume flow rate. With a typical hotend, you should be able to print at 205 C without jamming at a low flow rate. In machines with hardware that tends towards jamming, consider this video with Joel Telling.

Lower volume flows require lower temps, while higher volume flows require higher temps. In the previously-mentioned video, one way to overcome jamming is to set your temp to a higher-than-typical 240 C. This should then be matched with a high flow rate for a quality printing result.

For direct drives with a short distance between drive gears & nozzle, volume flows can approach 7-8 cubic mm/s or more if printing hot to overcome jamming. For bowden tubes where the distance between drive gear & nozzle are great or less powerful hotends, as little as 2 and as much as 4 cubic mm/s may be the limit. Beware of unintended speed changes from faster infills & slowing down for outlines or short layers. Consider our Ultimaker-specific blog for more on this topic.

A constant speed throughout the part is ideal from an extrusion perspective. Knowing your extrusion width, layer thickness & speed you can calculate your volume flow rate with the calculator like found in the previously-mentioned Ultimaker blog. Alternatively, if you know your volume flow rate limit, extrusion width & layer thickness, you can calculate your speed limit.

Heat Treat

PLA & HTPLA are amorphous in structure as printed (no heat treating) & though both are adequate performers in an office environment, they have poor temperature stability, loosing significant stiffness at temps nearing 60 C. Different than standard PLA, HTPLA is designed to survive heat treating for higher temp stability in a no/minimal load condition to near onset of melting (155 C). That's an astonishing improvement in thermal stability compared to standard PLA after a quick bake in the oven after printing.

In as little as 5-10 minutes for small, thin parts, HTPLA quickly crystallizes in an oven at 95-115 C (200-240 F) to become more stiff & hold form above glass transition (60 C). Depending on part geometry, setup & technique, parts can deform and shrink. Best results are with flat and/or supported parts with 100% infill. In this instance we experienced x/y shrinkage of about 2% & growth of about 1% in z.

Be sure to avoid hot spots (non-radiating surfaces & no glowing coils) in the oven used for baking & experiment before baking a prized part. Un-printed filament works great for experimentation & translucent makes the transformation most visible! Heat treating is an art, but the resulting improved thermal performance, if needed, is well-worth exploring. You'll be shocked by the improved thermal stability of your HTPLA parts!!!

 

High Temperature PLA ( HTPLA )

Looking for increased heat resistance without the need to switch to ABS? Protopasta High Temperature PLA offers heat deflection of up to 88° C (190.4° F) compared to standard PLA of 45-54° C (113-135° F). This makes it a great choice for moving parts (gears, RepRap pieces, etc) or prints that would face moderately high temperatures. Our High Temperature PLA is white, but can be painted after annealing.

What is it made out of?
Protopasta High Temperature PLA is made from a mineral filled, impact modified PLA with a nucleating agent to help promote crystallization. Crystallization after printing is what gives this material added heat resistance, so post-print annealing is essential to activate the heat deflection qualities of this material.
How do I anneal my print?
You can anneal your finished prints several ways, the two easiest ways are by using hot (but not boiling) water or by placing it in a low temperature oven (newer oven models only). Follow these steps:
  • Water Method: Find a pot large enough to hold your print and fill it halfway with water. On medium heat, heat the water until it reaches 95-115 C (200-240 F) (a cooking thermometer works great for this), turn the heat to low and submerge the print in the warm water bath for 6-10 minutes. Placing a lid on your pot will help the water maintain temperature.
  • Oven Method: Many newer ovens often have low temperature settings (sometimes called "keep warm" or "bread proof"). Set your oven to 95-115 C (200-240 F), place your finished print on a tray, and set it in the oven for 6-10 minutes.
  • SUPPORT YOUR PRINT! Because the annealing process will soften the plastic somewhat, it's best to support your print during this process.
What temperature should I print it at?
Because 3D printers vary so much from model to model, and because many RepRap printers combine parts from several manufactures, we can't provide the optimum temperature for your machine. Generally, our customers find it prints just like standard PLA on their machines (at around 210° C), though others find success running it a bit hotter (around 220° C).Do I need a heated bed? No, High Temp PLA does not require a heated bed or an enclosure.

Getting Started with Proto-pasta PLAs including HTPLA

We've created this page to bring you a premium PLA and HTPLA printing experience that rivals our premium material. Follow below to improve your 3D printing experience. In other words, here's your shortcut to awesomeness with pasta. If at the end of this document you have questions or need assistance, please contact us at [email protected].

Filament Handling

Loose coils can be very tricky to manage. Going cowboy on your spool handling can quickly end up in a frustrating, tangled mess. Keep your loose coils wrangled with a spool holder like masterspool for a more trouble-free experience. Find out more about loose coil handling in Keith's blog post.

And for spooled filament, never let go of the loose end. When not in the printer extruder, tuck it away in the cardboard spool's corrugation! Also, avoid sharp bends and excessive force when loading filament into your printer.

Print settings

At Proto-pasta, we make high quality filament. We aspire to make exceptional results easy, but a positive result is very much dependent on your hardware, set-up, adjustments, and process parameters. Matching hardware with process and material for a positive experience is not always straight-forward, but you can start by pairing the following settings with your printer for a good starting point, then tune or troubleshoot as required.

Example settings for typical printer

  • Nozzle size = 0.4 mm (Standard to most printers & balances detail with productivity.)
  • Extrusion width = 0.45 mm (Typically larger than nozzle size. If using a larger nozzle diameter, be sure to set the extrusion width larger than that nozzle diameter.)
  • Layer thickness = 0.15 mm (For a balance of speed, quality & reliability.)
  • Speed(s) = 15-45 mm/s (Respecting mechanical and volume flow limits. Stay within the recommended speed range but apply slower speeds to the walls and faster speeds to the infill.)
  • Volume flow rate(s) = 1-3 cu mm/s (The result of above speed range, width, and layer thickness. Respect hardware and geometry limitations.)
  • Typical temperature = 215 C +/- 10 C (Matching material, hardware, and volume flow rate.)

Volume flow rate together with temperature dictates how melted the material is. This is hardware & condition dependent based on hot end, nozzle & extruder type, material & manufacturer as well as layer fan type, position & settings. Extrusion width, layer thickness & speed changes affect volume flow which may change required/desired temperature.

Additional settings of note

  • “Grid” infill type at 20-30% - “connect infill lines” unchecked (off).
  • Minimum 3 shells & 4 top/bottom layers for good surface quality.
  • Layer fan set to cool enough for build rate, but not so aggressive as to fail process by over-cooling nozzle and heater block.

Validation and fine-tuning

Post your prints & tag us @Proto_pasta on Twitter and InstagramNeed more help? Consider typical pitfalls and fixes below.

Typical pitfalls

  • Exceeding hardware capabilities.
  • Mismatch of flow rate and temperature.
  • Excessive nozzle cooling from layer fan yielding lower heater block and/or nozzle temperatures than set point.
  • Hardware shortcomings such as MK3 heat break, poor nozzle diameter, or other hangups.
  • Poor assembly or adjustment of components.
  • Excessive retraction distance or number of retractions.
  • Inaccurate flow with missing cross-sections or wall thickness not matching extrusion width software setting.

Typical Fixes

  • Heat break replacement with OEM, straight-through design and defect-free, smooth bore.
  • Proper assembly of components without plastic oozing gaps & with thermal grease.
  • Lightly oiling filament, but careful, a little goes a long way.
  • Reducing layer fan speed and/or isolating from heater block and nozzle.
  • Installing heater block sock to isolate heater block & nozzle from layer fan.
  • Increasing temperature to flow past internal hang-ups.
  • Reduce speed and/or choose a single speed for a single volume flow
  • Consider drive gear tension adjustment, bowden tube coupling/replacement, and spool mounting

We visited Joel and ended up with a helpful video on the subject:

 

Para uma correcta manutenção da sua impressora 3D, recomendamos sempre que trocar de material de filamento 3D,  a efectuar uma purga com filamento especial de limpeza.
Desta forma garante que não ficam vestígios de material nas paredes do nozzle, evitando o acumular de crosta que é criado sempre que efectua trocas de material.
Com este produto evita problema como "clogs" e "jams" e fará com que o seu nozzle mantenha-se sempre limpo, durando muito mais tempo.
Poderá encontrar a partir de 1.49€  no seguinte LINK

 

 

3D lac comprar em Portugal

Para obter maior aderência à superfície da sua  impressora 3D recomendamos a aplicar 3DLAC  na base da plataforma.

Poderá encontrar no seguinte LINK

 

 

Este material é altamente higroscópico, absorvendo rapidamente a humidade do ar passados poucos minutos após aberto, impossibilitando desta forma a correcta impressão 3D do mesmo. O resultado das impressões 3D de materiais com humidade tendem a ser frágeis e de acabamento irregular ou em certos casos, torna-se simplesmente impossíveis de imprimir.
Deverá de usar soluções de caixas fechadas com dessecante como sílica ou caixas próprias secadoras de filamento.
Poderá encontrar  no seguinte LINK

 

 

Download: 
Technical and Safety Data Sheet

 

50g- Rolo
HTPLA Cupid's Crush Metallic Pink HTPLA
- Cor
1.75mm (+-0.05mm)
- Espessura / Tolerância de diâmetro
Muito Fácil
- Facilidade de Impressão




Grite ao Fillamentum por criar a popular Vertigo Grey. Também no topo da sua arte, nós apreciamos outras pessoas que fazem coisas boas. Afinal de contas, um pouco de competição saudável com alguma brincadeira e encorajamento faz uma boa diversão! Inspirado tanto pelo popular filamento como pela cultura cinematográfica, apresentamos-lhe o HTPLA Empire Strikes Black with Silver Metallic , um filamento PLA preto metálico de primeira qualidade com brilho prateado.

Esperamos que encontre inspiração semelhante nesta cor, uma vez que ela se liga aos seus gostos e interesses. Tomámos um cuidado especial para atingir o máximo de brilho, mantendo a cor rica, preta e evitando qualquer mudança para cinzento. É preciso um equilíbrio delicado de saturação, concentração e selecção de material para alcançar tal grandeza. Esperamos que aprecie e aprecie a qualidade e o artesanato que faz com que o Proto-pasta se destaque entre os fabricantes de filamentos.

 

 

ProtoPasta é uma empresa situada nos Estados Unidos da América, de produção de filamentos para impressão 3D de alta qualidade.
Caracterizada pelos rolos feitos em cartão, esta marca é mundialmente famosa  por ser especializada em materiais como PLA e ABS modificados com outros materiais, como o PLA Magnético; o PLA Condutivo; PLA de fibra de carbono; HTPLA de cobre, latão ou bronze; ou o ABS-PC.


Specs

Semi crystalline, heat treatable PLA for high temp use

Density: 1.24 g/cc
Length: 346 m/kg (1.75) 130 m/kg (2.85)
Typical Printing Temp: 205-225 C
Glass Transition (Tg)*: 60 C
Peak Crystallization (Tc)**: 95-115 C
Onset to Melt (Tm)***: 155 C
Typical change when heat treated: -2% x/y +1% z

Link to Safety Data Page

*max use with no heat treat & max platform temp
**heat treating @ temp 10+ min depending on size/mass
***max use when heat treated (annealed or crystallized)

Print

HTPLA prints well at 205-225 C, however it's important to match temp to your hardware & volume flow rate. With a typical hotend, you should be able to print at 205 C without jamming at a low flow rate. In machines with hardware that tends towards jamming, consider this video with Joel Telling.

Lower volume flows require lower temps, while higher volume flows require higher temps. In the previously-mentioned video, one way to overcome jamming is to set your temp to a higher-than-typical 240 C. This should then be matched with a high flow rate for a quality printing result.

For direct drives with a short distance between drive gears & nozzle, volume flows can approach 7-8 cubic mm/s or more if printing hot to overcome jamming. For bowden tubes where the distance between drive gear & nozzle are great or less powerful hotends, as little as 2 and as much as 4 cubic mm/s may be the limit. Beware of unintended speed changes from faster infills & slowing down for outlines or short layers. Consider our Ultimaker-specific blog for more on this topic.

A constant speed throughout the part is ideal from an extrusion perspective. Knowing your extrusion width, layer thickness & speed you can calculate your volume flow rate with the calculator like found in the previously-mentioned Ultimaker blog. Alternatively, if you know your volume flow rate limit, extrusion width & layer thickness, you can calculate your speed limit.

Heat Treat

PLA & HTPLA are amorphous in structure as printed (no heat treating) & though both are adequate performers in an office environment, they have poor temperature stability, loosing significant stiffness at temps nearing 60 C. Different than standard PLA, HTPLA is designed to survive heat treating for higher temp stability in a no/minimal load condition to near onset of melting (155 C). That's an astonishing improvement in thermal stability compared to standard PLA after a quick bake in the oven after printing.

In as little as 5-10 minutes for small, thin parts, HTPLA quickly crystallizes in an oven at 95-115 C (200-240 F) to become more stiff & hold form above glass transition (60 C). Depending on part geometry, setup & technique, parts can deform and shrink. Best results are with flat and/or supported parts with 100% infill. In this instance we experienced x/y shrinkage of about 2% & growth of about 1% in z.

Be sure to avoid hot spots (non-radiating surfaces & no glowing coils) in the oven used for baking & experiment before baking a prized part. Un-printed filament works great for experimentation & translucent makes the transformation most visible! Heat treating is an art, but the resulting improved thermal performance, if needed, is well-worth exploring. You'll be shocked by the improved thermal stability of your HTPLA parts!!!

 

High Temperature PLA ( HTPLA )

Looking for increased heat resistance without the need to switch to ABS? Protopasta High Temperature PLA offers heat deflection of up to 88° C (190.4° F) compared to standard PLA of 45-54° C (113-135° F). This makes it a great choice for moving parts (gears, RepRap pieces, etc) or prints that would face moderately high temperatures. Our High Temperature PLA is white, but can be painted after annealing.

What is it made out of?
Protopasta High Temperature PLA is made from a mineral filled, impact modified PLA with a nucleating agent to help promote crystallization. Crystallization after printing is what gives this material added heat resistance, so post-print annealing is essential to activate the heat deflection qualities of this material.
How do I anneal my print?
You can anneal your finished prints several ways, the two easiest ways are by using hot (but not boiling) water or by placing it in a low temperature oven (newer oven models only). Follow these steps:
  • Water Method: Find a pot large enough to hold your print and fill it halfway with water. On medium heat, heat the water until it reaches 95-115 C (200-240 F) (a cooking thermometer works great for this), turn the heat to low and submerge the print in the warm water bath for 6-10 minutes. Placing a lid on your pot will help the water maintain temperature.
  • Oven Method: Many newer ovens often have low temperature settings (sometimes called "keep warm" or "bread proof"). Set your oven to 95-115 C (200-240 F), place your finished print on a tray, and set it in the oven for 6-10 minutes.
  • SUPPORT YOUR PRINT! Because the annealing process will soften the plastic somewhat, it's best to support your print during this process.
What temperature should I print it at?
Because 3D printers vary so much from model to model, and because many RepRap printers combine parts from several manufactures, we can't provide the optimum temperature for your machine. Generally, our customers find it prints just like standard PLA on their machines (at around 210° C), though others find success running it a bit hotter (around 220° C).Do I need a heated bed? No, High Temp PLA does not require a heated bed or an enclosure.

Getting Started with Proto-pasta PLAs including HTPLA

We've created this page to bring you a premium PLA and HTPLA printing experience that rivals our premium material. Follow below to improve your 3D printing experience. In other words, here's your shortcut to awesomeness with pasta. If at the end of this document you have questions or need assistance, please contact us at [email protected].

Filament Handling

Loose coils can be very tricky to manage. Going cowboy on your spool handling can quickly end up in a frustrating, tangled mess. Keep your loose coils wrangled with a spool holder like masterspool for a more trouble-free experience. Find out more about loose coil handling in Keith's blog post.

And for spooled filament, never let go of the loose end. When not in the printer extruder, tuck it away in the cardboard spool's corrugation! Also, avoid sharp bends and excessive force when loading filament into your printer.

Print settings

At Proto-pasta, we make high quality filament. We aspire to make exceptional results easy, but a positive result is very much dependent on your hardware, set-up, adjustments, and process parameters. Matching hardware with process and material for a positive experience is not always straight-forward, but you can start by pairing the following settings with your printer for a good starting point, then tune or troubleshoot as required.

Example settings for typical printer

  • Nozzle size = 0.4 mm (Standard to most printers & balances detail with productivity.)
  • Extrusion width = 0.45 mm (Typically larger than nozzle size. If using a larger nozzle diameter, be sure to set the extrusion width larger than that nozzle diameter.)
  • Layer thickness = 0.15 mm (For a balance of speed, quality & reliability.)
  • Speed(s) = 15-45 mm/s (Respecting mechanical and volume flow limits. Stay within the recommended speed range but apply slower speeds to the walls and faster speeds to the infill.)
  • Volume flow rate(s) = 1-3 cu mm/s (The result of above speed range, width, and layer thickness. Respect hardware and geometry limitations.)
  • Typical temperature = 215 C +/- 10 C (Matching material, hardware, and volume flow rate.)

Volume flow rate together with temperature dictates how melted the material is. This is hardware & condition dependent based on hot end, nozzle & extruder type, material & manufacturer as well as layer fan type, position & settings. Extrusion width, layer thickness & speed changes affect volume flow which may change required/desired temperature.

Additional settings of note

  • “Grid” infill type at 20-30% - “connect infill lines” unchecked (off).
  • Minimum 3 shells & 4 top/bottom layers for good surface quality.
  • Layer fan set to cool enough for build rate, but not so aggressive as to fail process by over-cooling nozzle and heater block.

Validation and fine-tuning

Post your prints & tag us @Proto_pasta on Twitter and InstagramNeed more help? Consider typical pitfalls and fixes below.

Typical pitfalls

  • Exceeding hardware capabilities.
  • Mismatch of flow rate and temperature.
  • Excessive nozzle cooling from layer fan yielding lower heater block and/or nozzle temperatures than set point.
  • Hardware shortcomings such as MK3 heat break, poor nozzle diameter, or other hangups.
  • Poor assembly or adjustment of components.
  • Excessive retraction distance or number of retractions.
  • Inaccurate flow with missing cross-sections or wall thickness not matching extrusion width software setting.

Typical Fixes

  • Heat break replacement with OEM, straight-through design and defect-free, smooth bore.
  • Proper assembly of components without plastic oozing gaps & with thermal grease.
  • Lightly oiling filament, but careful, a little goes a long way.
  • Reducing layer fan speed and/or isolating from heater block and nozzle.
  • Installing heater block sock to isolate heater block & nozzle from layer fan.
  • Increasing temperature to flow past internal hang-ups.
  • Reduce speed and/or choose a single speed for a single volume flow
  • Consider drive gear tension adjustment, bowden tube coupling/replacement, and spool mounting

We visited Joel and ended up with a helpful video on the subject:

 

Para uma correcta manutenção da sua impressora 3D, recomendamos sempre que trocar de material de filamento 3D,  a efectuar uma purga com filamento especial de limpeza.
Desta forma garante que não ficam vestígios de material nas paredes do nozzle, evitando o acumular de crosta que é criado sempre que efectua trocas de material.
Com este produto evita problema como "clogs" e "jams" e fará com que o seu nozzle mantenha-se sempre limpo, durando muito mais tempo.
Poderá encontrar a partir de 1.49€  no seguinte LINK

 

 

3D lac comprar em Portugal

Para obter maior aderência à superfície da sua  impressora 3D recomendamos a aplicar 3DLAC  na base da plataforma.

Poderá encontrar no seguinte LINK

 

 

Este material é altamente higroscópico, absorvendo rapidamente a humidade do ar passados poucos minutos após aberto, impossibilitando desta forma a correcta impressão 3D do mesmo. O resultado das impressões 3D de materiais com humidade tendem a ser frágeis e de acabamento irregular ou em certos casos, torna-se simplesmente impossíveis de imprimir.
Deverá de usar soluções de caixas fechadas com dessecante como sílica ou caixas próprias secadoras de filamento.
Poderá encontrar  no seguinte LINK

 

 

Download: 
Technical and Safety Data Sheet

 

50g- Rolo
HTPLA Empire Strikes Black with Silver Metallic HTPLA
- Cor
1.75mm (+-0.05mm)
- Espessura / Tolerância de diâmetro
Muito Fácil
- Facilidade de Impressão




HTPLA Luke's Proton Purple Metallic , uma púrpura que rebenta!
Um roxo brilhante e gelado com muitas pérolas prateadas para textura e estourar.
Uma bela alternativa de cor mais clara ao púrpura metálico do Império Galáctico.
Destaque em Endless Pastabilities entrega Junho 2021
Concebido em colaboração com Luke Goodman (Out of Darts) & produzido por Protoplant, fabricantes de Protopasta

 

 

ProtoPasta é uma empresa situada nos Estados Unidos da América, de produção de filamentos para impressão 3D de alta qualidade.
Caracterizada pelos rolos feitos em cartão, esta marca é mundialmente famosa  por ser especializada em materiais como PLA e ABS modificados com outros materiais, como o PLA Magnético; o PLA Condutivo; PLA de fibra de carbono; HTPLA de cobre, latão ou bronze; ou o ABS-PC.


 

 

Specs

Semi crystalline, heat treatable PLA for high temp use

Density: 1.24 g/cc
Length: 346 m/kg (1.75) 130 m/kg (2.85)
Typical Printing Temp: 205-225 C
Glass Transition (Tg)*: 60 C
Peak Crystallization (Tc)**: 95-115 C
Onset to Melt (Tm)***: 155 C
Typical change when heat treated: -2% x/y +1% z

Link to Safety Data Page

*max use with no heat treat & max platform temp
**heat treating @ temp 10+ min depending on size/mass
***max use when heat treated (annealed or crystallized)

Print

HTPLA prints well at 205-225 C, however it's important to match temp to your hardware & volume flow rate. With a typical hotend, you should be able to print at 205 C without jamming at a low flow rate. In machines with hardware that tends towards jamming, consider this video with Joel Telling.

Lower volume flows require lower temps, while higher volume flows require higher temps. In the previously-mentioned video, one way to overcome jamming is to set your temp to a higher-than-typical 240 C. This should then be matched with a high flow rate for a quality printing result.

For direct drives with a short distance between drive gears & nozzle, volume flows can approach 7-8 cubic mm/s or more if printing hot to overcome jamming. For bowden tubes where the distance between drive gear & nozzle are great or less powerful hotends, as little as 2 and as much as 4 cubic mm/s may be the limit. Beware of unintended speed changes from faster infills & slowing down for outlines or short layers. Consider our Ultimaker-specific blog for more on this topic.

A constant speed throughout the part is ideal from an extrusion perspective. Knowing your extrusion width, layer thickness & speed you can calculate your volume flow rate with the calculator like found in the previously-mentioned Ultimaker blog. Alternatively, if you know your volume flow rate limit, extrusion width & layer thickness, you can calculate your speed limit.

Heat Treat

PLA & HTPLA are amorphous in structure as printed (no heat treating) & though both are adequate performers in an office environment, they have poor temperature stability, loosing significant stiffness at temps nearing 60 C. Different than standard PLA, HTPLA is designed to survive heat treating for higher temp stability in a no/minimal load condition to near onset of melting (155 C). That's an astonishing improvement in thermal stability compared to standard PLA after a quick bake in the oven after printing.

In as little as 5-10 minutes for small, thin parts, HTPLA quickly crystallizes in an oven at 95-115 C (200-240 F) to become more stiff & hold form above glass transition (60 C). Depending on part geometry, setup & technique, parts can deform and shrink. Best results are with flat and/or supported parts with 100% infill. In this instance we experienced x/y shrinkage of about 2% & growth of about 1% in z.

Be sure to avoid hot spots (non-radiating surfaces & no glowing coils) in the oven used for baking & experiment before baking a prized part. Un-printed filament works great for experimentation & translucent makes the transformation most visible! Heat treating is an art, but the resulting improved thermal performance, if needed, is well-worth exploring. You'll be shocked by the improved thermal stability of your HTPLA parts!!!

 

High Temperature PLA ( HTPLA )

Looking for increased heat resistance without the need to switch to ABS? Protopasta High Temperature PLA offers heat deflection of up to 88° C (190.4° F) compared to standard PLA of 45-54° C (113-135° F). This makes it a great choice for moving parts (gears, RepRap pieces, etc) or prints that would face moderately high temperatures. Our High Temperature PLA is white, but can be painted after annealing.

What is it made out of?
Protopasta High Temperature PLA is made from a mineral filled, impact modified PLA with a nucleating agent to help promote crystallization. Crystallization after printing is what gives this material added heat resistance, so post-print annealing is essential to activate the heat deflection qualities of this material.
How do I anneal my print?
You can anneal your finished prints several ways, the two easiest ways are by using hot (but not boiling) water or by placing it in a low temperature oven (newer oven models only). Follow these steps:
  • Water Method: Find a pot large enough to hold your print and fill it halfway with water. On medium heat, heat the water until it reaches 95-115 C (200-240 F) (a cooking thermometer works great for this), turn the heat to low and submerge the print in the warm water bath for 6-10 minutes. Placing a lid on your pot will help the water maintain temperature.
  • Oven Method: Many newer ovens often have low temperature settings (sometimes called "keep warm" or "bread proof"). Set your oven to 95-115 C (200-240 F), place your finished print on a tray, and set it in the oven for 6-10 minutes.
  • SUPPORT YOUR PRINT! Because the annealing process will soften the plastic somewhat, it's best to support your print during this process.
What temperature should I print it at?
Because 3D printers vary so much from model to model, and because many RepRap printers combine parts from several manufactures, we can't provide the optimum temperature for your machine. Generally, our customers find it prints just like standard PLA on their machines (at around 210° C), though others find success running it a bit hotter (around 220° C).Do I need a heated bed? No, High Temp PLA does not require a heated bed or an enclosure.

Getting Started with Proto-pasta PLAs including HTPLA

We've created this page to bring you a premium PLA and HTPLA printing experience that rivals our premium material. Follow below to improve your 3D printing experience. In other words, here's your shortcut to awesomeness with pasta. If at the end of this document you have questions or need assistance, please contact us at [email protected].

Filament Handling

Loose coils can be very tricky to manage. Going cowboy on your spool handling can quickly end up in a frustrating, tangled mess. Keep your loose coils wrangled with a spool holder like masterspool for a more trouble-free experience. Find out more about loose coil handling in Keith's blog post.

And for spooled filament, never let go of the loose end. When not in the printer extruder, tuck it away in the cardboard spool's corrugation! Also, avoid sharp bends and excessive force when loading filament into your printer.

Print settings

At Proto-pasta, we make high quality filament. We aspire to make exceptional results easy, but a positive result is very much dependent on your hardware, set-up, adjustments, and process parameters. Matching hardware with process and material for a positive experience is not always straight-forward, but you can start by pairing the following settings with your printer for a good starting point, then tune or troubleshoot as required.

Example settings for typical printer

  • Nozzle size = 0.4 mm (Standard to most printers & balances detail with productivity.)
  • Extrusion width = 0.45 mm (Typically larger than nozzle size. If using a larger nozzle diameter, be sure to set the extrusion width larger than that nozzle diameter.)
  • Layer thickness = 0.15 mm (For a balance of speed, quality & reliability.)
  • Speed(s) = 15-45 mm/s (Respecting mechanical and volume flow limits. Stay within the recommended speed range but apply slower speeds to the walls and faster speeds to the infill.)
  • Volume flow rate(s) = 1-3 cu mm/s (The result of above speed range, width, and layer thickness. Respect hardware and geometry limitations.)
  • Typical temperature = 215 C +/- 10 C (Matching material, hardware, and volume flow rate.)

Volume flow rate together with temperature dictates how melted the material is. This is hardware & condition dependent based on hot end, nozzle & extruder type, material & manufacturer as well as layer fan type, position & settings. Extrusion width, layer thickness & speed changes affect volume flow which may change required/desired temperature.

Additional settings of note

  • “Grid” infill type at 20-30% - “connect infill lines” unchecked (off).
  • Minimum 3 shells & 4 top/bottom layers for good surface quality.
  • Layer fan set to cool enough for build rate, but not so aggressive as to fail process by over-cooling nozzle and heater block.

Validation and fine-tuning

Post your prints & tag us @Proto_pasta on Twitter and InstagramNeed more help? Consider typical pitfalls and fixes below.

Typical pitfalls

  • Exceeding hardware capabilities.
  • Mismatch of flow rate and temperature.
  • Excessive nozzle cooling from layer fan yielding lower heater block and/or nozzle temperatures than set point.
  • Hardware shortcomings such as MK3 heat break, poor nozzle diameter, or other hangups.
  • Poor assembly or adjustment of components.
  • Excessive retraction distance or number of retractions.
  • Inaccurate flow with missing cross-sections or wall thickness not matching extrusion width software setting.

Typical Fixes

  • Heat break replacement with OEM, straight-through design and defect-free, smooth bore.
  • Proper assembly of components without plastic oozing gaps & with thermal grease.
  • Lightly oiling filament, but careful, a little goes a long way.
  • Reducing layer fan speed and/or isolating from heater block and nozzle.
  • Installing heater block sock to isolate heater block & nozzle from layer fan.
  • Increasing temperature to flow past internal hang-ups.
  • Reduce speed and/or choose a single speed for a single volume flow
  • Consider drive gear tension adjustment, bowden tube coupling/replacement, and spool mounting

We visited Joel and ended up with a helpful video on the subject:

 

Para uma correcta manutenção da sua impressora 3D, recomendamos sempre que trocar de material de filamento 3D,  a efectuar uma purga com filamento especial de limpeza.
Desta forma garante que não ficam vestígios de material nas paredes do nozzle, evitando o acumular de crosta que é criado sempre que efectua trocas de material.
Com este produto evita problema como "clogs" e "jams" e fará com que o seu nozzle mantenha-se sempre limpo, durando muito mais tempo.
Poderá encontrar a partir de 1.49€  no seguinte LINK

 

 

3D lac comprar em Portugal

Para obter maior aderência à superfície da sua  impressora 3D recomendamos a aplicar 3DLAC  na base da plataforma.

Poderá encontrar no seguinte LINK

 

 

Este material é altamente higroscópico, absorvendo rapidamente a humidade do ar passados poucos minutos após aberto, impossibilitando desta forma a correcta impressão 3D do mesmo. O resultado das impressões 3D de materiais com humidade tendem a ser frágeis e de acabamento irregular ou em certos casos, torna-se simplesmente impossíveis de imprimir.
Deverá de usar soluções de caixas fechadas com dessecante como sílica ou caixas próprias secadoras de filamento.
Poderá encontrar  no seguinte LINK

 

 

Download: 
Technical and Safety Data Sheet

 

50g- Rolo
HTPLA Luke's Proton Purple Metallic HTPLA
- Cor
1.75mm (+-0.05mm)
- Espessura / Tolerância de diâmetro
Muito Fácil
- Facilidade de Impressão




Quase preto, HTPLA Obsidian Metallic, este cinzento escuro tem uma textura fina e de classe e brilho
Um filamento de Endless Pastabilities inspirado no 3D Printed Debris
Concebido e produzido por Protoplant, fabricantes de Protopasta

 

 

ProtoPasta é uma empresa situada nos Estados Unidos da América, de produção de filamentos para impressão 3D de alta qualidade.
Caracterizada pelos rolos feitos em cartão, esta marca é mundialmente famosa  por ser especializada em materiais como PLA e ABS modificados com outros materiais, como o PLA Magnético; o PLA Condutivo; PLA de fibra de carbono; HTPLA de cobre, latão ou bronze; ou o ABS-PC.


 

 

Specs

Semi crystalline, heat treatable PLA for high temp use

Density: 1.24 g/cc
Length: 346 m/kg (1.75) 130 m/kg (2.85)
Typical Printing Temp: 205-225 C
Glass Transition (Tg)*: 60 C
Peak Crystallization (Tc)**: 95-115 C
Onset to Melt (Tm)***: 155 C
Typical change when heat treated: -2% x/y +1% z

Link to Safety Data Page

*max use with no heat treat & max platform temp
**heat treating @ temp 10+ min depending on size/mass
***max use when heat treated (annealed or crystallized)

Print

HTPLA prints well at 205-225 C, however it's important to match temp to your hardware & volume flow rate. With a typical hotend, you should be able to print at 205 C without jamming at a low flow rate. In machines with hardware that tends towards jamming, consider this video with Joel Telling.

Lower volume flows require lower temps, while higher volume flows require higher temps. In the previously-mentioned video, one way to overcome jamming is to set your temp to a higher-than-typical 240 C. This should then be matched with a high flow rate for a quality printing result.

For direct drives with a short distance between drive gears & nozzle, volume flows can approach 7-8 cubic mm/s or more if printing hot to overcome jamming. For bowden tubes where the distance between drive gear & nozzle are great or less powerful hotends, as little as 2 and as much as 4 cubic mm/s may be the limit. Beware of unintended speed changes from faster infills & slowing down for outlines or short layers. Consider our Ultimaker-specific blog for more on this topic.

A constant speed throughout the part is ideal from an extrusion perspective. Knowing your extrusion width, layer thickness & speed you can calculate your volume flow rate with the calculator like found in the previously-mentioned Ultimaker blog. Alternatively, if you know your volume flow rate limit, extrusion width & layer thickness, you can calculate your speed limit.

Heat Treat

PLA & HTPLA are amorphous in structure as printed (no heat treating) & though both are adequate performers in an office environment, they have poor temperature stability, loosing significant stiffness at temps nearing 60 C. Different than standard PLA, HTPLA is designed to survive heat treating for higher temp stability in a no/minimal load condition to near onset of melting (155 C). That's an astonishing improvement in thermal stability compared to standard PLA after a quick bake in the oven after printing.

In as little as 5-10 minutes for small, thin parts, HTPLA quickly crystallizes in an oven at 95-115 C (200-240 F) to become more stiff & hold form above glass transition (60 C). Depending on part geometry, setup & technique, parts can deform and shrink. Best results are with flat and/or supported parts with 100% infill. In this instance we experienced x/y shrinkage of about 2% & growth of about 1% in z.

Be sure to avoid hot spots (non-radiating surfaces & no glowing coils) in the oven used for baking & experiment before baking a prized part. Un-printed filament works great for experimentation & translucent makes the transformation most visible! Heat treating is an art, but the resulting improved thermal performance, if needed, is well-worth exploring. You'll be shocked by the improved thermal stability of your HTPLA parts!!!

 

High Temperature PLA ( HTPLA )

Looking for increased heat resistance without the need to switch to ABS? Protopasta High Temperature PLA offers heat deflection of up to 88° C (190.4° F) compared to standard PLA of 45-54° C (113-135° F). This makes it a great choice for moving parts (gears, RepRap pieces, etc) or prints that would face moderately high temperatures. Our High Temperature PLA is white, but can be painted after annealing.

What is it made out of?
Protopasta High Temperature PLA is made from a mineral filled, impact modified PLA with a nucleating agent to help promote crystallization. Crystallization after printing is what gives this material added heat resistance, so post-print annealing is essential to activate the heat deflection qualities of this material.
How do I anneal my print?
You can anneal your finished prints several ways, the two easiest ways are by using hot (but not boiling) water or by placing it in a low temperature oven (newer oven models only). Follow these steps:
  • Water Method: Find a pot large enough to hold your print and fill it halfway with water. On medium heat, heat the water until it reaches 95-115 C (200-240 F) (a cooking thermometer works great for this), turn the heat to low and submerge the print in the warm water bath for 6-10 minutes. Placing a lid on your pot will help the water maintain temperature.
  • Oven Method: Many newer ovens often have low temperature settings (sometimes called "keep warm" or "bread proof"). Set your oven to 95-115 C (200-240 F), place your finished print on a tray, and set it in the oven for 6-10 minutes.
  • SUPPORT YOUR PRINT! Because the annealing process will soften the plastic somewhat, it's best to support your print during this process.
What temperature should I print it at?
Because 3D printers vary so much from model to model, and because many RepRap printers combine parts from several manufactures, we can't provide the optimum temperature for your machine. Generally, our customers find it prints just like standard PLA on their machines (at around 210° C), though others find success running it a bit hotter (around 220° C).Do I need a heated bed? No, High Temp PLA does not require a heated bed or an enclosure.

Getting Started with Proto-pasta PLAs including HTPLA

We've created this page to bring you a premium PLA and HTPLA printing experience that rivals our premium material. Follow below to improve your 3D printing experience. In other words, here's your shortcut to awesomeness with pasta. If at the end of this document you have questions or need assistance, please contact us at [email protected].

Filament Handling

Loose coils can be very tricky to manage. Going cowboy on your spool handling can quickly end up in a frustrating, tangled mess. Keep your loose coils wrangled with a spool holder like masterspool for a more trouble-free experience. Find out more about loose coil handling in Keith's blog post.

And for spooled filament, never let go of the loose end. When not in the printer extruder, tuck it away in the cardboard spool's corrugation! Also, avoid sharp bends and excessive force when loading filament into your printer.

Print settings

At Proto-pasta, we make high quality filament. We aspire to make exceptional results easy, but a positive result is very much dependent on your hardware, set-up, adjustments, and process parameters. Matching hardware with process and material for a positive experience is not always straight-forward, but you can start by pairing the following settings with your printer for a good starting point, then tune or troubleshoot as required.

Example settings for typical printer

  • Nozzle size = 0.4 mm (Standard to most printers & balances detail with productivity.)
  • Extrusion width = 0.45 mm (Typically larger than nozzle size. If using a larger nozzle diameter, be sure to set the extrusion width larger than that nozzle diameter.)
  • Layer thickness = 0.15 mm (For a balance of speed, quality & reliability.)
  • Speed(s) = 15-45 mm/s (Respecting mechanical and volume flow limits. Stay within the recommended speed range but apply slower speeds to the walls and faster speeds to the infill.)
  • Volume flow rate(s) = 1-3 cu mm/s (The result of above speed range, width, and layer thickness. Respect hardware and geometry limitations.)
  • Typical temperature = 215 C +/- 10 C (Matching material, hardware, and volume flow rate.)

Volume flow rate together with temperature dictates how melted the material is. This is hardware & condition dependent based on hot end, nozzle & extruder type, material & manufacturer as well as layer fan type, position & settings. Extrusion width, layer thickness & speed changes affect volume flow which may change required/desired temperature.

Additional settings of note

  • “Grid” infill type at 20-30% - “connect infill lines” unchecked (off).
  • Minimum 3 shells & 4 top/bottom layers for good surface quality.
  • Layer fan set to cool enough for build rate, but not so aggressive as to fail process by over-cooling nozzle and heater block.

Validation and fine-tuning

Post your prints & tag us @Proto_pasta on Twitter and InstagramNeed more help? Consider typical pitfalls and fixes below.

Typical pitfalls

  • Exceeding hardware capabilities.
  • Mismatch of flow rate and temperature.
  • Excessive nozzle cooling from layer fan yielding lower heater block and/or nozzle temperatures than set point.
  • Hardware shortcomings such as MK3 heat break, poor nozzle diameter, or other hangups.
  • Poor assembly or adjustment of components.
  • Excessive retraction distance or number of retractions.
  • Inaccurate flow with missing cross-sections or wall thickness not matching extrusion width software setting.

Typical Fixes

  • Heat break replacement with OEM, straight-through design and defect-free, smooth bore.
  • Proper assembly of components without plastic oozing gaps & with thermal grease.
  • Lightly oiling filament, but careful, a little goes a long way.
  • Reducing layer fan speed and/or isolating from heater block and nozzle.
  • Installing heater block sock to isolate heater block & nozzle from layer fan.
  • Increasing temperature to flow past internal hang-ups.
  • Reduce speed and/or choose a single speed for a single volume flow
  • Consider drive gear tension adjustment, bowden tube coupling/replacement, and spool mounting

We visited Joel and ended up with a helpful video on the subject:

 

Para uma correcta manutenção da sua impressora 3D, recomendamos sempre que trocar de material de filamento 3D,  a efectuar uma purga com filamento especial de limpeza.
Desta forma garante que não ficam vestígios de material nas paredes do nozzle, evitando o acumular de crosta que é criado sempre que efectua trocas de material.
Com este produto evita problema como "clogs" e "jams" e fará com que o seu nozzle mantenha-se sempre limpo, durando muito mais tempo.
Poderá encontrar a partir de 1.49€  no seguinte LINK

 

 

3D lac comprar em Portugal

Para obter maior aderência à superfície da sua  impressora 3D recomendamos a aplicar 3DLAC  na base da plataforma.

Poderá encontrar no seguinte LINK

 

 

Este material é altamente higroscópico, absorvendo rapidamente a humidade do ar passados poucos minutos após aberto, impossibilitando desta forma a correcta impressão 3D do mesmo. O resultado das impressões 3D de materiais com humidade tendem a ser frágeis e de acabamento irregular ou em certos casos, torna-se simplesmente impossíveis de imprimir.
Deverá de usar soluções de caixas fechadas com dessecante como sílica ou caixas próprias secadoras de filamento.
Poderá encontrar  no seguinte LINK

 

 

Download: 
Technical and Safety Data Sheet

 

50g- Rolo
HTPLA Obsidian Metallic HTPLA
- Cor
1.75mm (+-0.05mm)
- Espessura / Tolerância de diâmetro
Muito Fácil
- Facilidade de Impressão




A nossa missão
Facilitar-te o acesso a produtos seleccionados com o rácio mais justo de qualidade/custo. Colocá-los ao teu dispor a um preço ainda melhor e tudo isto com stock em Portugal para que recebas os produtos o mais imediatamente possível
Links úteis
BlogTermos e Condições
Política de PrivacidadePolítica de CookiesRGPDResolução Alternativa de LitígiosTrabalha Connosco!
Levantamento em mãos
Dispomos da possibilidade de levantar gratuitamente encomendas nos Pickup 24/7.
Não dispomos de loja física.
Todas as compras de levantamento têm que ser previamente feitas online.
Obrigado pela compreensão!
Contactos
Largo Asilo da Gandarinha, nº 128
3720-362 Vila de Cucujães
Oliveira de Azeméis
Socialização faz bem
❤ Evolt 
2024
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram